{"title":"镁基储氢材料改性方面的进展","authors":"Lin Yang , Wen Zeng , Yanqiong Li","doi":"10.1016/j.pnsc.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium-based hydrogen storage materials represent a hydrogen storage technology with broad application prospects. As the global energy crisis and environmental pollution issues become increasingly severe, hydrogen, as a clean and efficient energy source, has garnered growing attention. Magnesium-based hydrogen storage, serving as a crucial means for storing and transporting hydrogen, is gaining prominence due to its abundant resources, low cost, low density, and high hydrogen storage density. However, challenges in terms of absorption/desorption rates, temperature, activation energy, and enthalpy during hydrogen application impede its development. To address these challenges, this paper systematically reviews current research on magnesium-based hydrogen storage materials, encompasses their types, characteristics, and hydrogen absorption mechanisms. Furthermore, it delves into the impacts of nanoscale dimensions, alloying, doping, and catalysis on the performance of magnesium-based materials. The aim is to provide valuable insights for research in related fields.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in the modification of magnesium-based hydrogen storage materials\",\"authors\":\"Lin Yang , Wen Zeng , Yanqiong Li\",\"doi\":\"10.1016/j.pnsc.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnesium-based hydrogen storage materials represent a hydrogen storage technology with broad application prospects. As the global energy crisis and environmental pollution issues become increasingly severe, hydrogen, as a clean and efficient energy source, has garnered growing attention. Magnesium-based hydrogen storage, serving as a crucial means for storing and transporting hydrogen, is gaining prominence due to its abundant resources, low cost, low density, and high hydrogen storage density. However, challenges in terms of absorption/desorption rates, temperature, activation energy, and enthalpy during hydrogen application impede its development. To address these challenges, this paper systematically reviews current research on magnesium-based hydrogen storage materials, encompasses their types, characteristics, and hydrogen absorption mechanisms. Furthermore, it delves into the impacts of nanoscale dimensions, alloying, doping, and catalysis on the performance of magnesium-based materials. The aim is to provide valuable insights for research in related fields.</p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124001126\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001126","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Advancements in the modification of magnesium-based hydrogen storage materials
Magnesium-based hydrogen storage materials represent a hydrogen storage technology with broad application prospects. As the global energy crisis and environmental pollution issues become increasingly severe, hydrogen, as a clean and efficient energy source, has garnered growing attention. Magnesium-based hydrogen storage, serving as a crucial means for storing and transporting hydrogen, is gaining prominence due to its abundant resources, low cost, low density, and high hydrogen storage density. However, challenges in terms of absorption/desorption rates, temperature, activation energy, and enthalpy during hydrogen application impede its development. To address these challenges, this paper systematically reviews current research on magnesium-based hydrogen storage materials, encompasses their types, characteristics, and hydrogen absorption mechanisms. Furthermore, it delves into the impacts of nanoscale dimensions, alloying, doping, and catalysis on the performance of magnesium-based materials. The aim is to provide valuable insights for research in related fields.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.