Linjuan Zhu , Yao Zhang , Shuo Xu , Baoyou Shi , Haotian Hao , Yili Wang
{"title":"氢氧化镧在复杂的水环境中具有稳定的磷酸盐吸附特性,显示出 La 基材料的最佳应用潜力","authors":"Linjuan Zhu , Yao Zhang , Shuo Xu , Baoyou Shi , Haotian Hao , Yili Wang","doi":"10.1016/j.jes.2024.05.014","DOIUrl":null,"url":null,"abstract":"<div><p>Three lanthanum morphology materials encompassing all lanthanum composites were synthesized by the direct precipitation method, and their phosphate adsorption order was determined as La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> > La(OH)<sub>3</sub> > La<sub>2</sub>O<sub>3</sub>. Further comparison of the adsorption performance between La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and La(OH)<sub>3</sub> revealed that the former exhibited a twofold higher rate of adsorption compared to the latter. The presence of SO<sub>4</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, Mg<sup>2+</sup>, and HA in the water led to a decrease in the phosphate adsorption of La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and La(OH)<sub>3</sub>, while Ca<sup>2+</sup> enhances the adsorption of phosphoric acid by both materials. Compared to La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>, La(OH)<sub>3</sub> exhibited stronger resistance against coexisting ions. The pH was the limiting factor for phosphate adsorption in both cases, and their adsorption capacity decreased significantly as the pH increased. The phosphate adsorption mechanism of La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> was ligand exchange to form inner-sphere complexes, while the phosphate adsorption mechanism of La(OH)<sub>3</sub> involved ligand exchange, inner-sphere complexation, and electrostatic attraction. The stability of La(OH)<sub>3</sub> exhibited superior performance compared to that of La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> over 5 adsorption-desorption cycles. Although La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> had a higher initial phosphate adsorption capacity than La(OH)<sub>3</sub>, its phosphate adsorption capacity decreased by 40% after five adsorption-desorption cycles, while that of La(OH)<sub>3</sub> decreased by 2.3%. Additionally, the amount of La(OH)<sub>3</sub> adsorbed after five cycles was 25.6% higher than that of La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>. Therefore, La(OH)<sub>3</sub> performs better regeneration adsorption than La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>. Furthermore, a smaller dosage of La(OH)<sub>3</sub> was required compared to La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> in a test aimed at lowering the actual phosphate concentration in water to 0.5 mg/L. In summary, La(OH)<sub>3</sub> is a more suitable substrate for cyclic adsorption for phosphorus removal than La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and has better potential for practical application. In conclusion, La(OH)<sub>3</sub> proves to be a more suitable substrate for cyclic adsorption in phosphorus removal compared to La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and exhibits superior potential for practical application.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lanthanum hydroxide showed best application potential in La-based materials based on its stable phosphate adsorption properties in complex water environments\",\"authors\":\"Linjuan Zhu , Yao Zhang , Shuo Xu , Baoyou Shi , Haotian Hao , Yili Wang\",\"doi\":\"10.1016/j.jes.2024.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three lanthanum morphology materials encompassing all lanthanum composites were synthesized by the direct precipitation method, and their phosphate adsorption order was determined as La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> > La(OH)<sub>3</sub> > La<sub>2</sub>O<sub>3</sub>. Further comparison of the adsorption performance between La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and La(OH)<sub>3</sub> revealed that the former exhibited a twofold higher rate of adsorption compared to the latter. The presence of SO<sub>4</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, Mg<sup>2+</sup>, and HA in the water led to a decrease in the phosphate adsorption of La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and La(OH)<sub>3</sub>, while Ca<sup>2+</sup> enhances the adsorption of phosphoric acid by both materials. Compared to La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>, La(OH)<sub>3</sub> exhibited stronger resistance against coexisting ions. The pH was the limiting factor for phosphate adsorption in both cases, and their adsorption capacity decreased significantly as the pH increased. The phosphate adsorption mechanism of La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> was ligand exchange to form inner-sphere complexes, while the phosphate adsorption mechanism of La(OH)<sub>3</sub> involved ligand exchange, inner-sphere complexation, and electrostatic attraction. The stability of La(OH)<sub>3</sub> exhibited superior performance compared to that of La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> over 5 adsorption-desorption cycles. Although La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> had a higher initial phosphate adsorption capacity than La(OH)<sub>3</sub>, its phosphate adsorption capacity decreased by 40% after five adsorption-desorption cycles, while that of La(OH)<sub>3</sub> decreased by 2.3%. Additionally, the amount of La(OH)<sub>3</sub> adsorbed after five cycles was 25.6% higher than that of La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>. Therefore, La(OH)<sub>3</sub> performs better regeneration adsorption than La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>. Furthermore, a smaller dosage of La(OH)<sub>3</sub> was required compared to La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> in a test aimed at lowering the actual phosphate concentration in water to 0.5 mg/L. In summary, La(OH)<sub>3</sub> is a more suitable substrate for cyclic adsorption for phosphorus removal than La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and has better potential for practical application. In conclusion, La(OH)<sub>3</sub> proves to be a more suitable substrate for cyclic adsorption in phosphorus removal compared to La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and exhibits superior potential for practical application.</p></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074224002468\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224002468","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Lanthanum hydroxide showed best application potential in La-based materials based on its stable phosphate adsorption properties in complex water environments
Three lanthanum morphology materials encompassing all lanthanum composites were synthesized by the direct precipitation method, and their phosphate adsorption order was determined as La2(CO3)3 > La(OH)3 > La2O3. Further comparison of the adsorption performance between La2(CO3)3 and La(OH)3 revealed that the former exhibited a twofold higher rate of adsorption compared to the latter. The presence of SO42−, HCO3−, Mg2+, and HA in the water led to a decrease in the phosphate adsorption of La2(CO3)3 and La(OH)3, while Ca2+ enhances the adsorption of phosphoric acid by both materials. Compared to La2(CO3)3, La(OH)3 exhibited stronger resistance against coexisting ions. The pH was the limiting factor for phosphate adsorption in both cases, and their adsorption capacity decreased significantly as the pH increased. The phosphate adsorption mechanism of La2(CO3)3 was ligand exchange to form inner-sphere complexes, while the phosphate adsorption mechanism of La(OH)3 involved ligand exchange, inner-sphere complexation, and electrostatic attraction. The stability of La(OH)3 exhibited superior performance compared to that of La2(CO3)3 over 5 adsorption-desorption cycles. Although La2(CO3)3 had a higher initial phosphate adsorption capacity than La(OH)3, its phosphate adsorption capacity decreased by 40% after five adsorption-desorption cycles, while that of La(OH)3 decreased by 2.3%. Additionally, the amount of La(OH)3 adsorbed after five cycles was 25.6% higher than that of La2(CO3)3. Therefore, La(OH)3 performs better regeneration adsorption than La2(CO3)3. Furthermore, a smaller dosage of La(OH)3 was required compared to La2(CO3)3 in a test aimed at lowering the actual phosphate concentration in water to 0.5 mg/L. In summary, La(OH)3 is a more suitable substrate for cyclic adsorption for phosphorus removal than La2(CO3)3 and has better potential for practical application. In conclusion, La(OH)3 proves to be a more suitable substrate for cyclic adsorption in phosphorus removal compared to La2(CO3)3 and exhibits superior potential for practical application.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.