Basmah N. Aldosari, Mohamed Abbas Ibrahim, Yara Alqahtani, Amal El Sayeh F. Abou El Ela
{"title":"氟康唑纳米悬浮剂的制备与评估:体外表征和经角膜渗透性研究","authors":"Basmah N. Aldosari, Mohamed Abbas Ibrahim, Yara Alqahtani, Amal El Sayeh F. Abou El Ela","doi":"10.1016/j.jsps.2024.102104","DOIUrl":null,"url":null,"abstract":"<div><p>The aim in this study was to develop and evaluate a nanofluconazole (FLZ) formulation with increased solubility and permeation rate using nanosuspensions. The FLZ nanosuspensions were stabilized using a variety of stabilizing agents and surfactants in various concentrations. The FLZ nanosuspension was characterized in vitro using particle size, zeta potential, X-ray powder diffraction (XRPD), and solubility. In addition, the ex vivo ocular permeation of FLZ through a goat cornea was analyzed. The results showed that the particle size of all nanosuspension formulations was in the nanometer range from 174.5 ± 1.9 to 720.2 ± 4.77 nm; that of the untreated drug was 18.34 μm. The zeta potential values were acceptable, which indicated suitable stability for formulations. The solubility of the nanosuspensions was up to 5.7-fold higher compared with that of the untreated drug. The results of the ex vivo ocular diffusion of the FLZ nanosuspensions showed the percentage of FLZ penetrating via the goat cornea increased after using Kollicoat to stabilize the nanosuspension formulation. Consequently, when using a nanosuspension formulation of Kollicoat, the antifungal activity of the drug strengthens.</p></div>","PeriodicalId":49257,"journal":{"name":"Saudi Pharmaceutical Journal","volume":"32 7","pages":"Article 102104"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319016424001543/pdfft?md5=c9ff351479b5cbdc78dae3f83fd589b6&pid=1-s2.0-S1319016424001543-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Formulation and evaluation of Fluconazole Nanosuspensions: In vitro characterization and transcorneal permeability studies\",\"authors\":\"Basmah N. Aldosari, Mohamed Abbas Ibrahim, Yara Alqahtani, Amal El Sayeh F. Abou El Ela\",\"doi\":\"10.1016/j.jsps.2024.102104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim in this study was to develop and evaluate a nanofluconazole (FLZ) formulation with increased solubility and permeation rate using nanosuspensions. The FLZ nanosuspensions were stabilized using a variety of stabilizing agents and surfactants in various concentrations. The FLZ nanosuspension was characterized in vitro using particle size, zeta potential, X-ray powder diffraction (XRPD), and solubility. In addition, the ex vivo ocular permeation of FLZ through a goat cornea was analyzed. The results showed that the particle size of all nanosuspension formulations was in the nanometer range from 174.5 ± 1.9 to 720.2 ± 4.77 nm; that of the untreated drug was 18.34 μm. The zeta potential values were acceptable, which indicated suitable stability for formulations. The solubility of the nanosuspensions was up to 5.7-fold higher compared with that of the untreated drug. The results of the ex vivo ocular diffusion of the FLZ nanosuspensions showed the percentage of FLZ penetrating via the goat cornea increased after using Kollicoat to stabilize the nanosuspension formulation. Consequently, when using a nanosuspension formulation of Kollicoat, the antifungal activity of the drug strengthens.</p></div>\",\"PeriodicalId\":49257,\"journal\":{\"name\":\"Saudi Pharmaceutical Journal\",\"volume\":\"32 7\",\"pages\":\"Article 102104\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319016424001543/pdfft?md5=c9ff351479b5cbdc78dae3f83fd589b6&pid=1-s2.0-S1319016424001543-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saudi Pharmaceutical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319016424001543\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Pharmaceutical Journal","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319016424001543","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Formulation and evaluation of Fluconazole Nanosuspensions: In vitro characterization and transcorneal permeability studies
The aim in this study was to develop and evaluate a nanofluconazole (FLZ) formulation with increased solubility and permeation rate using nanosuspensions. The FLZ nanosuspensions were stabilized using a variety of stabilizing agents and surfactants in various concentrations. The FLZ nanosuspension was characterized in vitro using particle size, zeta potential, X-ray powder diffraction (XRPD), and solubility. In addition, the ex vivo ocular permeation of FLZ through a goat cornea was analyzed. The results showed that the particle size of all nanosuspension formulations was in the nanometer range from 174.5 ± 1.9 to 720.2 ± 4.77 nm; that of the untreated drug was 18.34 μm. The zeta potential values were acceptable, which indicated suitable stability for formulations. The solubility of the nanosuspensions was up to 5.7-fold higher compared with that of the untreated drug. The results of the ex vivo ocular diffusion of the FLZ nanosuspensions showed the percentage of FLZ penetrating via the goat cornea increased after using Kollicoat to stabilize the nanosuspension formulation. Consequently, when using a nanosuspension formulation of Kollicoat, the antifungal activity of the drug strengthens.
期刊介绍:
The Saudi Pharmaceutical Journal (SPJ) is the official journal of the Saudi Pharmaceutical Society (SPS) publishing high quality clinically oriented submissions which encompass the various disciplines of pharmaceutical sciences and related subjects. SPJ publishes 8 issues per year by the Saudi Pharmaceutical Society, with the cooperation of the College of Pharmacy, King Saud University.