印度阿什塔穆迪湖中的微塑料污染:拉姆萨尔湿地的启示

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Suvarna S. Devi, Beena Ramachandran Gouri, S. Anjali, Appukuttannair Biju Kumar
{"title":"印度阿什塔穆迪湖中的微塑料污染:拉姆萨尔湿地的启示","authors":"Suvarna S. Devi,&nbsp;Beena Ramachandran Gouri,&nbsp;S. Anjali,&nbsp;Appukuttannair Biju Kumar","doi":"10.1016/j.jconhyd.2024.104367","DOIUrl":null,"url":null,"abstract":"<div><p>Estuaries function as temporary storage sites for plastic debris, influencing the distribution of microplastics (MPs) across ecosystems. This research delves into the presence of MPs in the water, sediment, fish, and shellfish of Ashtamudi Lake, a Ramsar wetland with brackish water located on the southwest coast of India. Given the lake's significance in supporting the livelihoods of numerous fishers and acting as a vital source of fishery resources for both local consumption and export, examining the contamination of the system by MPs becomes particularly pertinent. The highest percentage composition of MPs was found in macrofauna at 60.6% (with fish at 19.6% and shellfish at 40.9%), followed by sediment (22.8%) and water (16.7%). The primary types of MPs identified in all samples were fibers (35.6%), fragments (33.3%), and films (28%), with beads being the least represented at 3.03%. ATR-FTIR and Raman spectra analysis identified five polymers from shellfish (polypropylene, polyethylene, polystyrene, nylon, and polyvinyl chloride), five from fish guts (nylon, polypropylene, polyethylene, polyurethane, and polysiloxane), four in sediment (polypropylene, polyethylene, nylon, rayon), and four in water samples (polypropylene, polyethylene, nylon, and polystyrene). SEM-EDAX analysis of MPs obtained from the samples revealed degradation and the presence of inorganic elements such as Na, Mg, Al, Si, S, K, Cl, P, and Ca, as well as heavy metals like Pb, Mo, Rh, Pd, Ti, and Fe. The existence of these plastic polymers and heavy metals in microplastic samples poses a threat to vulnerable biota; people consume contaminated fish and shellfish, underscoring the importance of monitoring MPs in lake water. This investigation of MPs in Ashtamudi Lake highlights the system's susceptibility to plastic pollution and the bioavailability of smaller MPs to aquatic organisms. Identified sources of MPs in the lake include fishing and aquaculture activities, sewage pollution, improper solid waste management in lake watersheds, and unsustainable tourism. Upstream and downstream management interventions are recommended to address MP pollution in Ashtamudi Lake.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"264 ","pages":"Article 104367"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastic contamination in Ashtamudi Lake, India: Insights from a Ramsar wetland\",\"authors\":\"Suvarna S. Devi,&nbsp;Beena Ramachandran Gouri,&nbsp;S. Anjali,&nbsp;Appukuttannair Biju Kumar\",\"doi\":\"10.1016/j.jconhyd.2024.104367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Estuaries function as temporary storage sites for plastic debris, influencing the distribution of microplastics (MPs) across ecosystems. This research delves into the presence of MPs in the water, sediment, fish, and shellfish of Ashtamudi Lake, a Ramsar wetland with brackish water located on the southwest coast of India. Given the lake's significance in supporting the livelihoods of numerous fishers and acting as a vital source of fishery resources for both local consumption and export, examining the contamination of the system by MPs becomes particularly pertinent. The highest percentage composition of MPs was found in macrofauna at 60.6% (with fish at 19.6% and shellfish at 40.9%), followed by sediment (22.8%) and water (16.7%). The primary types of MPs identified in all samples were fibers (35.6%), fragments (33.3%), and films (28%), with beads being the least represented at 3.03%. ATR-FTIR and Raman spectra analysis identified five polymers from shellfish (polypropylene, polyethylene, polystyrene, nylon, and polyvinyl chloride), five from fish guts (nylon, polypropylene, polyethylene, polyurethane, and polysiloxane), four in sediment (polypropylene, polyethylene, nylon, rayon), and four in water samples (polypropylene, polyethylene, nylon, and polystyrene). SEM-EDAX analysis of MPs obtained from the samples revealed degradation and the presence of inorganic elements such as Na, Mg, Al, Si, S, K, Cl, P, and Ca, as well as heavy metals like Pb, Mo, Rh, Pd, Ti, and Fe. The existence of these plastic polymers and heavy metals in microplastic samples poses a threat to vulnerable biota; people consume contaminated fish and shellfish, underscoring the importance of monitoring MPs in lake water. This investigation of MPs in Ashtamudi Lake highlights the system's susceptibility to plastic pollution and the bioavailability of smaller MPs to aquatic organisms. Identified sources of MPs in the lake include fishing and aquaculture activities, sewage pollution, improper solid waste management in lake watersheds, and unsustainable tourism. Upstream and downstream management interventions are recommended to address MP pollution in Ashtamudi Lake.</p></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"264 \",\"pages\":\"Article 104367\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000718\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000718","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

河口是塑料碎片的临时储存地,影响着微塑料(MPs)在整个生态系统中的分布。阿什塔穆迪湖是位于印度西南海岸的拉姆萨尔湿地,湖水为咸水,本研究深入探讨了阿什塔穆迪湖的湖水、沉积物、鱼类和贝类中存在的 MPs。阿什塔穆迪湖是位于印度西南海岸的拉姆萨尔湿地,水质为咸水。鉴于该湖对支持众多渔民的生计具有重要意义,同时也是供当地消费和出口的重要渔业资源来源,因此对该系统的多溴联苯污染情况进行研究就显得尤为重要。大型底栖生物中 MPs 的比例最高,占 60.6%(鱼类占 19.6%,贝类占 40.9%),其次是沉积物(22.8%)和水(16.7%)。在所有样本中鉴定出的主要 MPs 类型为纤维(35.6%)、碎片(33.3%)和薄膜(28%),其中珠状物所占比例最低,仅为 3.03%。ATR-FTIR 和拉曼光谱分析确定了贝类(聚丙烯、聚乙烯、聚苯乙烯、尼龙和聚氯乙烯)中的五种聚合物、鱼内脏(尼龙、聚丙烯、聚乙烯、聚氨酯和聚硅氧烷)中的五种聚合物、沉积物(聚丙烯、聚乙烯、尼龙和人造丝)中的四种聚合物和水样(聚丙烯、聚乙烯、尼龙和聚苯乙烯)中的四种聚合物。对从样品中提取的 MPs 进行的 SEM-EDAX 分析表明,这些 MPs 已经降解,并含有 Na、Mg、Al、Si、S、K、Cl、P 和 Ca 等无机元素以及 Pb、Mo、Rh、Pd、Ti 和 Fe 等重金属。微塑料样本中存在的这些塑料聚合物和重金属对脆弱的生物群构成了威胁;人们食用了受污染的鱼类和贝类,这突出了监测湖水中 MPs 的重要性。对阿什塔穆迪湖中多孔塑料的调查凸显了该水系易受塑料污染以及较小的多孔塑料对水生生物的生物利用率。已确定的湖中 MPs 来源包括捕鱼和水产养殖活动、污水污染、湖泊流域固体废物管理不当以及不可持续的旅游业。建议对上游和下游采取管理干预措施,以解决阿什塔穆迪湖的 MP 污染问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microplastic contamination in Ashtamudi Lake, India: Insights from a Ramsar wetland

Microplastic contamination in Ashtamudi Lake, India: Insights from a Ramsar wetland

Estuaries function as temporary storage sites for plastic debris, influencing the distribution of microplastics (MPs) across ecosystems. This research delves into the presence of MPs in the water, sediment, fish, and shellfish of Ashtamudi Lake, a Ramsar wetland with brackish water located on the southwest coast of India. Given the lake's significance in supporting the livelihoods of numerous fishers and acting as a vital source of fishery resources for both local consumption and export, examining the contamination of the system by MPs becomes particularly pertinent. The highest percentage composition of MPs was found in macrofauna at 60.6% (with fish at 19.6% and shellfish at 40.9%), followed by sediment (22.8%) and water (16.7%). The primary types of MPs identified in all samples were fibers (35.6%), fragments (33.3%), and films (28%), with beads being the least represented at 3.03%. ATR-FTIR and Raman spectra analysis identified five polymers from shellfish (polypropylene, polyethylene, polystyrene, nylon, and polyvinyl chloride), five from fish guts (nylon, polypropylene, polyethylene, polyurethane, and polysiloxane), four in sediment (polypropylene, polyethylene, nylon, rayon), and four in water samples (polypropylene, polyethylene, nylon, and polystyrene). SEM-EDAX analysis of MPs obtained from the samples revealed degradation and the presence of inorganic elements such as Na, Mg, Al, Si, S, K, Cl, P, and Ca, as well as heavy metals like Pb, Mo, Rh, Pd, Ti, and Fe. The existence of these plastic polymers and heavy metals in microplastic samples poses a threat to vulnerable biota; people consume contaminated fish and shellfish, underscoring the importance of monitoring MPs in lake water. This investigation of MPs in Ashtamudi Lake highlights the system's susceptibility to plastic pollution and the bioavailability of smaller MPs to aquatic organisms. Identified sources of MPs in the lake include fishing and aquaculture activities, sewage pollution, improper solid waste management in lake watersheds, and unsustainable tourism. Upstream and downstream management interventions are recommended to address MP pollution in Ashtamudi Lake.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信