Suvarna S. Devi, Beena Ramachandran Gouri, S. Anjali, Appukuttannair Biju Kumar
{"title":"印度阿什塔穆迪湖中的微塑料污染:拉姆萨尔湿地的启示","authors":"Suvarna S. Devi, Beena Ramachandran Gouri, S. Anjali, Appukuttannair Biju Kumar","doi":"10.1016/j.jconhyd.2024.104367","DOIUrl":null,"url":null,"abstract":"<div><p>Estuaries function as temporary storage sites for plastic debris, influencing the distribution of microplastics (MPs) across ecosystems. This research delves into the presence of MPs in the water, sediment, fish, and shellfish of Ashtamudi Lake, a Ramsar wetland with brackish water located on the southwest coast of India. Given the lake's significance in supporting the livelihoods of numerous fishers and acting as a vital source of fishery resources for both local consumption and export, examining the contamination of the system by MPs becomes particularly pertinent. The highest percentage composition of MPs was found in macrofauna at 60.6% (with fish at 19.6% and shellfish at 40.9%), followed by sediment (22.8%) and water (16.7%). The primary types of MPs identified in all samples were fibers (35.6%), fragments (33.3%), and films (28%), with beads being the least represented at 3.03%. ATR-FTIR and Raman spectra analysis identified five polymers from shellfish (polypropylene, polyethylene, polystyrene, nylon, and polyvinyl chloride), five from fish guts (nylon, polypropylene, polyethylene, polyurethane, and polysiloxane), four in sediment (polypropylene, polyethylene, nylon, rayon), and four in water samples (polypropylene, polyethylene, nylon, and polystyrene). SEM-EDAX analysis of MPs obtained from the samples revealed degradation and the presence of inorganic elements such as Na, Mg, Al, Si, S, K, Cl, P, and Ca, as well as heavy metals like Pb, Mo, Rh, Pd, Ti, and Fe. The existence of these plastic polymers and heavy metals in microplastic samples poses a threat to vulnerable biota; people consume contaminated fish and shellfish, underscoring the importance of monitoring MPs in lake water. This investigation of MPs in Ashtamudi Lake highlights the system's susceptibility to plastic pollution and the bioavailability of smaller MPs to aquatic organisms. Identified sources of MPs in the lake include fishing and aquaculture activities, sewage pollution, improper solid waste management in lake watersheds, and unsustainable tourism. Upstream and downstream management interventions are recommended to address MP pollution in Ashtamudi Lake.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastic contamination in Ashtamudi Lake, India: Insights from a Ramsar wetland\",\"authors\":\"Suvarna S. Devi, Beena Ramachandran Gouri, S. Anjali, Appukuttannair Biju Kumar\",\"doi\":\"10.1016/j.jconhyd.2024.104367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Estuaries function as temporary storage sites for plastic debris, influencing the distribution of microplastics (MPs) across ecosystems. This research delves into the presence of MPs in the water, sediment, fish, and shellfish of Ashtamudi Lake, a Ramsar wetland with brackish water located on the southwest coast of India. Given the lake's significance in supporting the livelihoods of numerous fishers and acting as a vital source of fishery resources for both local consumption and export, examining the contamination of the system by MPs becomes particularly pertinent. The highest percentage composition of MPs was found in macrofauna at 60.6% (with fish at 19.6% and shellfish at 40.9%), followed by sediment (22.8%) and water (16.7%). The primary types of MPs identified in all samples were fibers (35.6%), fragments (33.3%), and films (28%), with beads being the least represented at 3.03%. ATR-FTIR and Raman spectra analysis identified five polymers from shellfish (polypropylene, polyethylene, polystyrene, nylon, and polyvinyl chloride), five from fish guts (nylon, polypropylene, polyethylene, polyurethane, and polysiloxane), four in sediment (polypropylene, polyethylene, nylon, rayon), and four in water samples (polypropylene, polyethylene, nylon, and polystyrene). SEM-EDAX analysis of MPs obtained from the samples revealed degradation and the presence of inorganic elements such as Na, Mg, Al, Si, S, K, Cl, P, and Ca, as well as heavy metals like Pb, Mo, Rh, Pd, Ti, and Fe. The existence of these plastic polymers and heavy metals in microplastic samples poses a threat to vulnerable biota; people consume contaminated fish and shellfish, underscoring the importance of monitoring MPs in lake water. This investigation of MPs in Ashtamudi Lake highlights the system's susceptibility to plastic pollution and the bioavailability of smaller MPs to aquatic organisms. Identified sources of MPs in the lake include fishing and aquaculture activities, sewage pollution, improper solid waste management in lake watersheds, and unsustainable tourism. Upstream and downstream management interventions are recommended to address MP pollution in Ashtamudi Lake.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000718\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000718","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Microplastic contamination in Ashtamudi Lake, India: Insights from a Ramsar wetland
Estuaries function as temporary storage sites for plastic debris, influencing the distribution of microplastics (MPs) across ecosystems. This research delves into the presence of MPs in the water, sediment, fish, and shellfish of Ashtamudi Lake, a Ramsar wetland with brackish water located on the southwest coast of India. Given the lake's significance in supporting the livelihoods of numerous fishers and acting as a vital source of fishery resources for both local consumption and export, examining the contamination of the system by MPs becomes particularly pertinent. The highest percentage composition of MPs was found in macrofauna at 60.6% (with fish at 19.6% and shellfish at 40.9%), followed by sediment (22.8%) and water (16.7%). The primary types of MPs identified in all samples were fibers (35.6%), fragments (33.3%), and films (28%), with beads being the least represented at 3.03%. ATR-FTIR and Raman spectra analysis identified five polymers from shellfish (polypropylene, polyethylene, polystyrene, nylon, and polyvinyl chloride), five from fish guts (nylon, polypropylene, polyethylene, polyurethane, and polysiloxane), four in sediment (polypropylene, polyethylene, nylon, rayon), and four in water samples (polypropylene, polyethylene, nylon, and polystyrene). SEM-EDAX analysis of MPs obtained from the samples revealed degradation and the presence of inorganic elements such as Na, Mg, Al, Si, S, K, Cl, P, and Ca, as well as heavy metals like Pb, Mo, Rh, Pd, Ti, and Fe. The existence of these plastic polymers and heavy metals in microplastic samples poses a threat to vulnerable biota; people consume contaminated fish and shellfish, underscoring the importance of monitoring MPs in lake water. This investigation of MPs in Ashtamudi Lake highlights the system's susceptibility to plastic pollution and the bioavailability of smaller MPs to aquatic organisms. Identified sources of MPs in the lake include fishing and aquaculture activities, sewage pollution, improper solid waste management in lake watersheds, and unsustainable tourism. Upstream and downstream management interventions are recommended to address MP pollution in Ashtamudi Lake.