基于 TimesNet-GRU 架构的新型风能预测迁移学习策略

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dan Li, Yue Hu, Baohua Yang, Zeren Fang, Yunyan Liang, Shuai He
{"title":"基于 TimesNet-GRU 架构的新型风能预测迁移学习策略","authors":"Dan Li, Yue Hu, Baohua Yang, Zeren Fang, Yunyan Liang, Shuai He","doi":"10.1063/5.0200518","DOIUrl":null,"url":null,"abstract":"Currently, data-driven deep learning models are widely applied in the field of wind power prediction. However, when historical data are insufficient, deep learning models struggle to exhibit satisfactory predictive performance. In order to overcome the issue of limited training data for new wind farms, this study proposes a novel transfer learning strategy to address the challenge of less-sample learning in short-term wind power prediction. The research is conducted in two stages. In the pre-training stage, the TimesNet-GRU prediction model is established using data from a source wind farm. Parallel TimesNet modules are employed to extract multi-period features from various input feature sequences, followed by the extraction of long- and short-term features from the time series through gate recurrent unit (GRU). In the transfer learning stage, an effective transfer strategy is designed to freeze and retrain certain parameters of the TimesNet-GRU, thereby constructing a prediction model for the target wind farm. To validate the effectiveness of this approach, the results from testing with actual data from five wind farms in northwest China demonstrate that the proposed method exhibits significant advantages over models without transfer learning as explored in this study.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel transfer learning strategy for wind power prediction based on TimesNet-GRU architecture\",\"authors\":\"Dan Li, Yue Hu, Baohua Yang, Zeren Fang, Yunyan Liang, Shuai He\",\"doi\":\"10.1063/5.0200518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, data-driven deep learning models are widely applied in the field of wind power prediction. However, when historical data are insufficient, deep learning models struggle to exhibit satisfactory predictive performance. In order to overcome the issue of limited training data for new wind farms, this study proposes a novel transfer learning strategy to address the challenge of less-sample learning in short-term wind power prediction. The research is conducted in two stages. In the pre-training stage, the TimesNet-GRU prediction model is established using data from a source wind farm. Parallel TimesNet modules are employed to extract multi-period features from various input feature sequences, followed by the extraction of long- and short-term features from the time series through gate recurrent unit (GRU). In the transfer learning stage, an effective transfer strategy is designed to freeze and retrain certain parameters of the TimesNet-GRU, thereby constructing a prediction model for the target wind farm. To validate the effectiveness of this approach, the results from testing with actual data from five wind farms in northwest China demonstrate that the proposed method exhibits significant advantages over models without transfer learning as explored in this study.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0200518\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0200518","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,数据驱动的深度学习模型被广泛应用于风力发电预测领域。然而,当历史数据不足时,深度学习模型很难表现出令人满意的预测性能。为了克服新风场训练数据有限的问题,本研究提出了一种新颖的迁移学习策略,以应对短期风电预测中样本较少学习的挑战。研究分两个阶段进行。在预训练阶段,使用源风电场的数据建立 TimesNet-GRU 预测模型。采用并行 TimesNet 模块从各种输入特征序列中提取多周期特征,然后通过门递归单元(GRU)从时间序列中提取长期和短期特征。在迁移学习阶段,设计了一种有效的迁移策略来冻结和重新训练 TimesNet-GRU 的某些参数,从而为目标风场构建预测模型。为了验证这种方法的有效性,利用中国西北地区五个风电场的实际数据进行测试的结果表明,与本研究探索的没有转移学习的模型相比,所提出的方法具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel transfer learning strategy for wind power prediction based on TimesNet-GRU architecture
Currently, data-driven deep learning models are widely applied in the field of wind power prediction. However, when historical data are insufficient, deep learning models struggle to exhibit satisfactory predictive performance. In order to overcome the issue of limited training data for new wind farms, this study proposes a novel transfer learning strategy to address the challenge of less-sample learning in short-term wind power prediction. The research is conducted in two stages. In the pre-training stage, the TimesNet-GRU prediction model is established using data from a source wind farm. Parallel TimesNet modules are employed to extract multi-period features from various input feature sequences, followed by the extraction of long- and short-term features from the time series through gate recurrent unit (GRU). In the transfer learning stage, an effective transfer strategy is designed to freeze and retrain certain parameters of the TimesNet-GRU, thereby constructing a prediction model for the target wind farm. To validate the effectiveness of this approach, the results from testing with actual data from five wind farms in northwest China demonstrate that the proposed method exhibits significant advantages over models without transfer learning as explored in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信