利用 14 MeV 中子对低 Z 掩蔽高 Z(铅、铀)材料成像

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
S. Bishnoi, T. Patel, P.S. Sarkar, L. Pant
{"title":"利用 14 MeV 中子对低 Z 掩蔽高 Z(铅、铀)材料成像","authors":"S. Bishnoi, T. Patel, P.S. Sarkar, L. Pant","doi":"10.1088/1748-0221/19/05/p05022","DOIUrl":null,"url":null,"abstract":"\n An experimental study has been performed using 14 MeV neutrons for imaging of low Z material (particularly composed of C, H, O elements) masked with thick layers of dense and high Z materials. The experimental setup consists of a D-T neutron generator, a metallic collimator and an imaging system. The imaging system is designed with a polypropylene zinc sulphide scintillator screen integrated with a lens coupled 16-bit ICCD camera. Imaging capability of the system was investigated using iron test samples with holes and line pair features. The minimum hole size of 2 mm could be imaged at a contrast of 36% and a line of 2 mm width visible at a contrast of 24% indicating the system's resolution of ∼ mm. Low Z samples such as water (H2O) and polyethylene (C2H2)\n n\n placed behind thick layers of Pb (40 mm) and Uranium (35 mm), were imaged successfully. These images reveal the system's ability towards low Z material imaging in the presence of heavier metals. Good contrast images acquired at a lower neutron yield of ∼ 5 × 108 n/sec of D-T neutron generator has provided a possibility to realise fast neutron imaging having moderate resolution (∼ mm) with a smaller footprint and an economical system design for field applications.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging of low Z masked with high Z (Pb, U) materials using 14 MeV neutron\",\"authors\":\"S. Bishnoi, T. Patel, P.S. Sarkar, L. Pant\",\"doi\":\"10.1088/1748-0221/19/05/p05022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An experimental study has been performed using 14 MeV neutrons for imaging of low Z material (particularly composed of C, H, O elements) masked with thick layers of dense and high Z materials. The experimental setup consists of a D-T neutron generator, a metallic collimator and an imaging system. The imaging system is designed with a polypropylene zinc sulphide scintillator screen integrated with a lens coupled 16-bit ICCD camera. Imaging capability of the system was investigated using iron test samples with holes and line pair features. The minimum hole size of 2 mm could be imaged at a contrast of 36% and a line of 2 mm width visible at a contrast of 24% indicating the system's resolution of ∼ mm. Low Z samples such as water (H2O) and polyethylene (C2H2)\\n n\\n placed behind thick layers of Pb (40 mm) and Uranium (35 mm), were imaged successfully. These images reveal the system's ability towards low Z material imaging in the presence of heavier metals. Good contrast images acquired at a lower neutron yield of ∼ 5 × 108 n/sec of D-T neutron generator has provided a possibility to realise fast neutron imaging having moderate resolution (∼ mm) with a smaller footprint and an economical system design for field applications.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/19/05/p05022\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/05/p05022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

利用 14 MeV 中子对被高密度高 Z 材料厚层掩盖的低 Z 材料(特别是由 C、H、O 元素组成的材料)进行了成像实验研究。实验装置包括一个 D-T 中子发生器、一个金属准直器和一个成像系统。成像系统由一个聚丙烯硫化锌闪烁屏和一个镜头耦合 16 位 ICCD 相机组成。使用带有孔和线对特征的铁测试样品对该系统的成像能力进行了研究。在对比度为 36% 的情况下,可以对最小尺寸为 2 毫米的孔进行成像,在对比度为 24% 的情况下,可以看到宽度为 2 毫米的线,这表明该系统的分辨率为 ∼ 毫米。在厚铅层(40 毫米)和厚铀层(35 毫米)后放置的低 Z 样品,如水(H2O)和聚乙烯(C2H2),也能成功成像。这些图像显示了该系统在较重金属存在的情况下对低 Z 材料成像的能力。D-T 中子发生器的中子产率较低,仅为 5 × 108 n/sec,但却能获得对比度良好的图像,这为实现具有中等分辨率(∼ mm)的快速中子成像提供了可能,同时也为现场应用提供了更小的占地面积和更经济的系统设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imaging of low Z masked with high Z (Pb, U) materials using 14 MeV neutron
An experimental study has been performed using 14 MeV neutrons for imaging of low Z material (particularly composed of C, H, O elements) masked with thick layers of dense and high Z materials. The experimental setup consists of a D-T neutron generator, a metallic collimator and an imaging system. The imaging system is designed with a polypropylene zinc sulphide scintillator screen integrated with a lens coupled 16-bit ICCD camera. Imaging capability of the system was investigated using iron test samples with holes and line pair features. The minimum hole size of 2 mm could be imaged at a contrast of 36% and a line of 2 mm width visible at a contrast of 24% indicating the system's resolution of ∼ mm. Low Z samples such as water (H2O) and polyethylene (C2H2) n placed behind thick layers of Pb (40 mm) and Uranium (35 mm), were imaged successfully. These images reveal the system's ability towards low Z material imaging in the presence of heavier metals. Good contrast images acquired at a lower neutron yield of ∼ 5 × 108 n/sec of D-T neutron generator has provided a possibility to realise fast neutron imaging having moderate resolution (∼ mm) with a smaller footprint and an economical system design for field applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Instrumentation
Journal of Instrumentation 工程技术-仪器仪表
CiteScore
2.40
自引率
15.40%
发文量
827
审稿时长
7.5 months
期刊介绍: Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include. -Accelerators: concepts, modelling, simulations and sources- Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons- Detector physics: concepts, processes, methods, modelling and simulations- Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics- Instrumentation and methods for plasma research- Methods and apparatus for astronomy and astrophysics- Detectors, methods and apparatus for biomedical applications, life sciences and material research- Instrumentation and techniques for medical imaging, diagnostics and therapy- Instrumentation and techniques for dosimetry, monitoring and radiation damage- Detectors, instrumentation and methods for non-destructive tests (NDT)- Detector readout concepts, electronics and data acquisition methods- Algorithms, software and data reduction methods- Materials and associated technologies, etc.- Engineering and technical issues. JINST also includes a section dedicated to technical reports and instrumentation theses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信