{"title":"方形相场晶体模型无条件能量稳定二阶 BDF 方案的时间误差分析","authors":"Guomei Zhao , Shuaifei Hu","doi":"10.1016/j.apnum.2024.05.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first propose and study the second-order time-discrete numerical scheme for the sixth-order nonlinear parabolic problem of the square phase-field crystal model. Then, we demonstrate the two-step backward differentiation formula (BDF-2) scheme with mass conservation and energy dissipation, where the higher order nonlinear term is treated implicitly. Moreover, a rigorous error analysis is presented and we prove the optimal second-order convergence rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>- norm, where <em>τ</em> is the time step. Finally, some numerical results are provided to confirm our theoretical analysis.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal error analysis of an unconditionally energy stable second-order BDF scheme for the square phase-field crystal model\",\"authors\":\"Guomei Zhao , Shuaifei Hu\",\"doi\":\"10.1016/j.apnum.2024.05.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first propose and study the second-order time-discrete numerical scheme for the sixth-order nonlinear parabolic problem of the square phase-field crystal model. Then, we demonstrate the two-step backward differentiation formula (BDF-2) scheme with mass conservation and energy dissipation, where the higher order nonlinear term is treated implicitly. Moreover, a rigorous error analysis is presented and we prove the optimal second-order convergence rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>- norm, where <em>τ</em> is the time step. Finally, some numerical results are provided to confirm our theoretical analysis.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Temporal error analysis of an unconditionally energy stable second-order BDF scheme for the square phase-field crystal model
In this paper, we first propose and study the second-order time-discrete numerical scheme for the sixth-order nonlinear parabolic problem of the square phase-field crystal model. Then, we demonstrate the two-step backward differentiation formula (BDF-2) scheme with mass conservation and energy dissipation, where the higher order nonlinear term is treated implicitly. Moreover, a rigorous error analysis is presented and we prove the optimal second-order convergence rate in - norm, where τ is the time step. Finally, some numerical results are provided to confirm our theoretical analysis.