Reece J. Lamb , Kayleigh Griffiths , Gregory Y.H. Lip , Vitaly Sorokin , Michael P. Frenneaux , Martin Feelisch , Melanie Madhani
{"title":"ALDH2 多态性与心肌梗死:从酒精代谢到氧化还原调节","authors":"Reece J. Lamb , Kayleigh Griffiths , Gregory Y.H. Lip , Vitaly Sorokin , Michael P. Frenneaux , Martin Feelisch , Melanie Madhani","doi":"10.1016/j.pharmthera.2024.108666","DOIUrl":null,"url":null,"abstract":"<div><p>Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, <em>via</em> pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.</p></div>","PeriodicalId":402,"journal":{"name":"Pharmacology & Therapeutics","volume":"259 ","pages":"Article 108666"},"PeriodicalIF":12.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016372582400086X/pdfft?md5=d1ecdcb6f90f4a15f49b7d911fd0e346&pid=1-s2.0-S016372582400086X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation\",\"authors\":\"Reece J. Lamb , Kayleigh Griffiths , Gregory Y.H. Lip , Vitaly Sorokin , Michael P. Frenneaux , Martin Feelisch , Melanie Madhani\",\"doi\":\"10.1016/j.pharmthera.2024.108666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, <em>via</em> pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.</p></div>\",\"PeriodicalId\":402,\"journal\":{\"name\":\"Pharmacology & Therapeutics\",\"volume\":\"259 \",\"pages\":\"Article 108666\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016372582400086X/pdfft?md5=d1ecdcb6f90f4a15f49b7d911fd0e346&pid=1-s2.0-S016372582400086X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016372582400086X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016372582400086X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation
Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, via pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.
期刊介绍:
Pharmacology & Therapeutics, in its 20th year, delivers lucid, critical, and authoritative reviews on current pharmacological topics.Articles, commissioned by the editor, follow specific author instructions.This journal maintains its scientific excellence and ranks among the top 10 most cited journals in pharmacology.