人参锈根症状转录组分析及其由活性氧理论指导的致病机理

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pengcheng Yu, Xiaowen Song, Wei Zhang, Yao Yao, Junling Ren, Liyang Wang, Wenfei Liu, Zhaoping Meng, Xiangcai Meng
{"title":"人参锈根症状转录组分析及其由活性氧理论指导的致病机理","authors":"Pengcheng Yu, Xiaowen Song, Wei Zhang, Yao Yao, Junling Ren, Liyang Wang, Wenfei Liu, Zhaoping Meng, Xiangcai Meng","doi":"10.1002/pld3.586","DOIUrl":null,"url":null,"abstract":"Abstract Ginseng rusty root symptoms (GRS) is a primary disease of ginseng, which seriously decreases the yield and quality of ginseng and causes enormous losses to ginseng production. GRS prevention and control is still challenging due to its unclear etiology. In this study, the phloem tissue of healthy Panax ginseng (AG), the nonred tissue of the phloem epidermis around the lesion (BG), and the red lesion site tissue of GRS (CG) were extracted for mRNA transcriptomic analysis; 35,958 differentially expressed genes (DEGs) were identified and were associated with multiple stress resistance pathways, reactive oxygen species (ROS), and iron ion binding. Further study showed that the contents of O2 •‐, H2O2, and malondialdehyde (MDA) were significantly increased in BG and CG tissues. Under anaerobic conditions caused by excessive soil moisture, the overproduction of ROS destroys cell membranes, simultaneously converting Fe2+ to Fe3+ and depositing it in the cell wall, which results in GRS, as evidenced by the success of the GRS induction test.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of ginseng rusty root symptoms transcriptome and its pathogenesis directed by reactive oxygen species theory\",\"authors\":\"Pengcheng Yu, Xiaowen Song, Wei Zhang, Yao Yao, Junling Ren, Liyang Wang, Wenfei Liu, Zhaoping Meng, Xiangcai Meng\",\"doi\":\"10.1002/pld3.586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ginseng rusty root symptoms (GRS) is a primary disease of ginseng, which seriously decreases the yield and quality of ginseng and causes enormous losses to ginseng production. GRS prevention and control is still challenging due to its unclear etiology. In this study, the phloem tissue of healthy Panax ginseng (AG), the nonred tissue of the phloem epidermis around the lesion (BG), and the red lesion site tissue of GRS (CG) were extracted for mRNA transcriptomic analysis; 35,958 differentially expressed genes (DEGs) were identified and were associated with multiple stress resistance pathways, reactive oxygen species (ROS), and iron ion binding. Further study showed that the contents of O2 •‐, H2O2, and malondialdehyde (MDA) were significantly increased in BG and CG tissues. Under anaerobic conditions caused by excessive soil moisture, the overproduction of ROS destroys cell membranes, simultaneously converting Fe2+ to Fe3+ and depositing it in the cell wall, which results in GRS, as evidenced by the success of the GRS induction test.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 人参锈根病(GRS)是人参的一种主要病害,严重降低人参的产量和质量,给人参生产造成巨大损失。由于病因不清,人参锈根症的防控仍面临挑战。本研究提取了健康人参的韧皮部组织(AG)、病变周围的非红色韧皮部表皮组织(BG)和GRS的红色病变部位组织(CG)进行mRNA转录组分析,发现了35958个差异表达基因(DEG),这些基因与多种抗应激途径、活性氧(ROS)和铁离子结合有关。进一步的研究表明,BG 和 CG 组织中的 O2-、H2O2 和丙二醛(MDA)含量显著增加。在土壤水分过多造成的厌氧条件下,ROS的过度产生会破坏细胞膜,同时将Fe2+转化为Fe3+并沉积在细胞壁中,从而导致GRS,GRS诱导试验的成功就证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of ginseng rusty root symptoms transcriptome and its pathogenesis directed by reactive oxygen species theory
Abstract Ginseng rusty root symptoms (GRS) is a primary disease of ginseng, which seriously decreases the yield and quality of ginseng and causes enormous losses to ginseng production. GRS prevention and control is still challenging due to its unclear etiology. In this study, the phloem tissue of healthy Panax ginseng (AG), the nonred tissue of the phloem epidermis around the lesion (BG), and the red lesion site tissue of GRS (CG) were extracted for mRNA transcriptomic analysis; 35,958 differentially expressed genes (DEGs) were identified and were associated with multiple stress resistance pathways, reactive oxygen species (ROS), and iron ion binding. Further study showed that the contents of O2 •‐, H2O2, and malondialdehyde (MDA) were significantly increased in BG and CG tissues. Under anaerobic conditions caused by excessive soil moisture, the overproduction of ROS destroys cell membranes, simultaneously converting Fe2+ to Fe3+ and depositing it in the cell wall, which results in GRS, as evidenced by the success of the GRS induction test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信