合成的海藻酸钙-氧化石墨烯在去除制革废水中的 Cr3+、Cu2+ 和 Cd2+ 离子方面的特性和应用

Sobur Ahmed , Tasrina Rabia Choudhury , Md. Zahangir Alam , Mohammad Nurnabi
{"title":"合成的海藻酸钙-氧化石墨烯在去除制革废水中的 Cr3+、Cu2+ 和 Cd2+ 离子方面的特性和应用","authors":"Sobur Ahmed ,&nbsp;Tasrina Rabia Choudhury ,&nbsp;Md. Zahangir Alam ,&nbsp;Mohammad Nurnabi","doi":"10.1016/j.clwat.2024.100016","DOIUrl":null,"url":null,"abstract":"<div><p>Environmental sustainability has gained acceptance to achieving the goal of a secure ecosystem with a reliable management system. Heavy metal remediation of aqueous streams is of special concern due to the intractability and persistence in the environment. Adsorption is a potential alternative to the existing inefficient conventional technologies for the removal and recovery of metal ions from aqueous solutions and becomes vital to align with the Sustainable Development Goals (SDGs) and mitigate the adverse environmental and social impacts. Calcium Alginate-Graphene oxide (CA-GO) composite has been synthesized for the adsorption of heavy metals including Cr<sup>3+</sup>, Cu<sup>2+</sup>, and Cd<sup>2+</sup> ions from tannery effluents. Graphene oxide is prepared from commercial graphite powder and reacted with sodium alginate and calcium chloride to form the beads of CA-GO composite. The developed composite was characterized by FTIR, elemental analysis, SEM, XRD analysis, and Raman spectroscopy. Moreover, the effect of pH, adsorbent dosage, contact time, and initial concentration of metal ions on the adsorption capacity were investigated through batch experiments. At a pH&gt;3.0 (pHzpc), the carboxyl group of CA-GO was deprotonated to make the surface negatively charged and facilitate metal adsorption. The optimum pH and maximum adsorption capacity of CA-GO for removal of Cr(III), Cu(II), and Cd(II) were 4.5, 6.0, and 7.0, and 90.58, 108.57, and 134.77 mg g<sup>−1</sup>, respectively. The kinetics, adsorption isotherms, and thermodynamics were studied to determine the adsorption mechanism. The kinetic of adsorption adopted the second-order model. Thermodynamic parameter were calculated and the adsorption process was determined to be exothermic and spontaneous at room temperature. The developed composite has been efficaciously applied for the removal of metal ions and pollution from real tannery effluents.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100016"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000140/pdfft?md5=ae15bc62317288b6e46fb4138571e7c5&pid=1-s2.0-S2950263224000140-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterization and application of synthesized calcium alginate-graphene oxide for the removal of Cr3+, Cu2+ and Cd2+ ions from tannery effluents\",\"authors\":\"Sobur Ahmed ,&nbsp;Tasrina Rabia Choudhury ,&nbsp;Md. Zahangir Alam ,&nbsp;Mohammad Nurnabi\",\"doi\":\"10.1016/j.clwat.2024.100016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Environmental sustainability has gained acceptance to achieving the goal of a secure ecosystem with a reliable management system. Heavy metal remediation of aqueous streams is of special concern due to the intractability and persistence in the environment. Adsorption is a potential alternative to the existing inefficient conventional technologies for the removal and recovery of metal ions from aqueous solutions and becomes vital to align with the Sustainable Development Goals (SDGs) and mitigate the adverse environmental and social impacts. Calcium Alginate-Graphene oxide (CA-GO) composite has been synthesized for the adsorption of heavy metals including Cr<sup>3+</sup>, Cu<sup>2+</sup>, and Cd<sup>2+</sup> ions from tannery effluents. Graphene oxide is prepared from commercial graphite powder and reacted with sodium alginate and calcium chloride to form the beads of CA-GO composite. The developed composite was characterized by FTIR, elemental analysis, SEM, XRD analysis, and Raman spectroscopy. Moreover, the effect of pH, adsorbent dosage, contact time, and initial concentration of metal ions on the adsorption capacity were investigated through batch experiments. At a pH&gt;3.0 (pHzpc), the carboxyl group of CA-GO was deprotonated to make the surface negatively charged and facilitate metal adsorption. The optimum pH and maximum adsorption capacity of CA-GO for removal of Cr(III), Cu(II), and Cd(II) were 4.5, 6.0, and 7.0, and 90.58, 108.57, and 134.77 mg g<sup>−1</sup>, respectively. The kinetics, adsorption isotherms, and thermodynamics were studied to determine the adsorption mechanism. The kinetic of adsorption adopted the second-order model. Thermodynamic parameter were calculated and the adsorption process was determined to be exothermic and spontaneous at room temperature. The developed composite has been efficaciously applied for the removal of metal ions and pollution from real tannery effluents.</p></div>\",\"PeriodicalId\":100257,\"journal\":{\"name\":\"Cleaner Water\",\"volume\":\"1 \",\"pages\":\"Article 100016\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950263224000140/pdfft?md5=ae15bc62317288b6e46fb4138571e7c5&pid=1-s2.0-S2950263224000140-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950263224000140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263224000140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环境的可持续发展已被越来越多的人所接受,其目标是通过可靠的管理系统实现安全的生态系统。由于重金属在环境中的难处理性和持久性,水流中的重金属修复问题尤其受到关注。吸附技术可替代现有的低效传统技术,用于去除和回收水溶液中的金属离子,对于实现可持续发展目标(SDGs)和减轻对环境和社会的不利影响至关重要。我们合成了海藻酸钙-氧化石墨烯(CA-GO)复合材料,用于吸附制革废水中的重金属,包括 Cr3+、Cu2+ 和 Cd2+ 离子。氧化石墨烯由商用石墨粉制备而成,并与海藻酸钠和氯化钙反应形成 CA-GO 复合材料珠。傅立叶变换红外光谱、元素分析、扫描电镜、X 射线衍射分析和拉曼光谱对所开发的复合材料进行了表征。此外,还通过批量实验研究了 pH 值、吸附剂用量、接触时间和金属离子初始浓度对吸附容量的影响。在 pH 值为 3.0(pHzpc)时,CA-GO 的羧基被去质子化,使表面带负电荷,有利于金属的吸附。CA-GO 去除 Cr(III)、Cu(II)和 Cd(II) 的最佳 pH 值和最大吸附容量分别为 4.5、6.0 和 7.0,以及 90.58、108.57 和 134.77 mg g-1。为了确定吸附机理,对动力学、吸附等温线和热力学进行了研究。吸附动力学采用二阶模型。计算了热力学参数,确定吸附过程在室温下是放热和自发的。所开发的复合材料已被有效地用于去除实际制革废水中的金属离子和污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization and application of synthesized calcium alginate-graphene oxide for the removal of Cr3+, Cu2+ and Cd2+ ions from tannery effluents

Environmental sustainability has gained acceptance to achieving the goal of a secure ecosystem with a reliable management system. Heavy metal remediation of aqueous streams is of special concern due to the intractability and persistence in the environment. Adsorption is a potential alternative to the existing inefficient conventional technologies for the removal and recovery of metal ions from aqueous solutions and becomes vital to align with the Sustainable Development Goals (SDGs) and mitigate the adverse environmental and social impacts. Calcium Alginate-Graphene oxide (CA-GO) composite has been synthesized for the adsorption of heavy metals including Cr3+, Cu2+, and Cd2+ ions from tannery effluents. Graphene oxide is prepared from commercial graphite powder and reacted with sodium alginate and calcium chloride to form the beads of CA-GO composite. The developed composite was characterized by FTIR, elemental analysis, SEM, XRD analysis, and Raman spectroscopy. Moreover, the effect of pH, adsorbent dosage, contact time, and initial concentration of metal ions on the adsorption capacity were investigated through batch experiments. At a pH>3.0 (pHzpc), the carboxyl group of CA-GO was deprotonated to make the surface negatively charged and facilitate metal adsorption. The optimum pH and maximum adsorption capacity of CA-GO for removal of Cr(III), Cu(II), and Cd(II) were 4.5, 6.0, and 7.0, and 90.58, 108.57, and 134.77 mg g−1, respectively. The kinetics, adsorption isotherms, and thermodynamics were studied to determine the adsorption mechanism. The kinetic of adsorption adopted the second-order model. Thermodynamic parameter were calculated and the adsorption process was determined to be exothermic and spontaneous at room temperature. The developed composite has been efficaciously applied for the removal of metal ions and pollution from real tannery effluents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信