C. Mouchref, B. Viggiano, O. Ferčák, J. Bossuyt, N. Ali, C. Meneveau, D. Gayme, R. B. Cal
{"title":"通过象限分析确定定底式海上风力涡轮机尾流中雷诺切应力的波相依赖性","authors":"C. Mouchref, B. Viggiano, O. Ferčák, J. Bossuyt, N. Ali, C. Meneveau, D. Gayme, R. B. Cal","doi":"10.1063/5.0191264","DOIUrl":null,"url":null,"abstract":"There has been an increase in recognition of the important role that the boundary layer turbulent flow structure has on wake recovery and concomitant wind farm efficiency. Most research thus far has focused on onshore wind farms, in which the ground surface is static. With the expected growth of offshore wind farms, there is increased interest in turbulent flow structures above wavy, moving surfaces and their effects on offshore wind farms. In this study, experiments are performed to analyze the turbulent structure above the waves in the wake of a fixed-bottom model wind farm, with special emphasis on the conditional averaged Reynolds stresses, using a quadrant analysis. Phase-averaged profiles show a correlation between the Reynolds shear stresses and the curvature of the waves. Using a quadrant analysis, Reynolds stress dependence on the wave phase is observed in the phase-dependent vertical position of the turbulence events. This trend is primarily seen in quadrants 1 and 3 (correlated outward and inward interactions). Quantification of the correlation between the Reynolds shear stress events and the surface waves provides insight into the turbulent flow mechanisms that influence wake recovery throughout the wake region and should be taken into consideration in wind turbine operation and placement.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"60 5","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave-phase dependence of Reynolds shear stress in the wake of fixed-bottom offshore wind turbine via quadrant analysis\",\"authors\":\"C. Mouchref, B. Viggiano, O. Ferčák, J. Bossuyt, N. Ali, C. Meneveau, D. Gayme, R. B. Cal\",\"doi\":\"10.1063/5.0191264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been an increase in recognition of the important role that the boundary layer turbulent flow structure has on wake recovery and concomitant wind farm efficiency. Most research thus far has focused on onshore wind farms, in which the ground surface is static. With the expected growth of offshore wind farms, there is increased interest in turbulent flow structures above wavy, moving surfaces and their effects on offshore wind farms. In this study, experiments are performed to analyze the turbulent structure above the waves in the wake of a fixed-bottom model wind farm, with special emphasis on the conditional averaged Reynolds stresses, using a quadrant analysis. Phase-averaged profiles show a correlation between the Reynolds shear stresses and the curvature of the waves. Using a quadrant analysis, Reynolds stress dependence on the wave phase is observed in the phase-dependent vertical position of the turbulence events. This trend is primarily seen in quadrants 1 and 3 (correlated outward and inward interactions). Quantification of the correlation between the Reynolds shear stress events and the surface waves provides insight into the turbulent flow mechanisms that influence wake recovery throughout the wake region and should be taken into consideration in wind turbine operation and placement.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"60 5\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0191264\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0191264","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Wave-phase dependence of Reynolds shear stress in the wake of fixed-bottom offshore wind turbine via quadrant analysis
There has been an increase in recognition of the important role that the boundary layer turbulent flow structure has on wake recovery and concomitant wind farm efficiency. Most research thus far has focused on onshore wind farms, in which the ground surface is static. With the expected growth of offshore wind farms, there is increased interest in turbulent flow structures above wavy, moving surfaces and their effects on offshore wind farms. In this study, experiments are performed to analyze the turbulent structure above the waves in the wake of a fixed-bottom model wind farm, with special emphasis on the conditional averaged Reynolds stresses, using a quadrant analysis. Phase-averaged profiles show a correlation between the Reynolds shear stresses and the curvature of the waves. Using a quadrant analysis, Reynolds stress dependence on the wave phase is observed in the phase-dependent vertical position of the turbulence events. This trend is primarily seen in quadrants 1 and 3 (correlated outward and inward interactions). Quantification of the correlation between the Reynolds shear stress events and the surface waves provides insight into the turbulent flow mechanisms that influence wake recovery throughout the wake region and should be taken into consideration in wind turbine operation and placement.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.