Mercedes Ames, A. Hamernik, William L Behling, D. Douches, Dennis A. Halterman, Paul C. Bethke
{"title":"野生马铃薯和栽培马铃薯中 Sli 基因的调查","authors":"Mercedes Ames, A. Hamernik, William L Behling, D. Douches, Dennis A. Halterman, Paul C. Bethke","doi":"10.1002/pld3.589","DOIUrl":null,"url":null,"abstract":"Abstract Inbred‐hybrid breeding of diploid potatoes necessitates breeding lines that are self‐compatible. One way of incorporating self‐compatibility into incompatible cultivated potato ( Solanum tuberosum ) germplasm is to introduce the S‐locus inhibitor gene (Sli), which functions as a dominant inhibitor of gametophytic self‐incompatibility. To learn more about Sli diversity and function in wild species relatives of cultivated potato, we obtained Sli gene sequences that extended from the 5′UTR to the 3′UTR from 133 individuals from 22 wild species relatives of potato and eight diverse cultivated potato clones. DNA sequence alignment and phylogenetic trees based on genomic and protein sequences show that there are two highly conserved groups of Sli sequences. DNA sequences in one group contain the 533 bp insertion upstream of the start codon identified previously in self‐compatible potato. The second group lacks the insertion. Three diploid and four polyploid individuals of wild species collected from geographically disjointed localities contained Sli with the 533 bp insertion. For most of the wild species clones examined, however, Sli did not have the insertion. Phylogenetic analysis indicated that Sli sequences with the insertion, in wild species and in cultivated clones, trace back to a single origin. Some diploid wild potatoes that have Sli with the insertion were self‐incompatible and some wild potatoes that lack the insertion were self‐compatible. Although there is evidence of positive selection for some codon positions in Sli, there is no evidence of diversifying selection at the gene level. In silico analysis of Sli protein structure did not support the hypothesis that amino acid changes from wild‐type (no insertion) to insertion‐type account for changes in protein function. Our study demonstrated that genetic factors besides the Sli gene must be important for conditioning a switch in the mating system from self‐incompatible to self‐compatible in wild potatoes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey of the Sli gene in wild and cultivated potato\",\"authors\":\"Mercedes Ames, A. Hamernik, William L Behling, D. Douches, Dennis A. Halterman, Paul C. Bethke\",\"doi\":\"10.1002/pld3.589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Inbred‐hybrid breeding of diploid potatoes necessitates breeding lines that are self‐compatible. One way of incorporating self‐compatibility into incompatible cultivated potato ( Solanum tuberosum ) germplasm is to introduce the S‐locus inhibitor gene (Sli), which functions as a dominant inhibitor of gametophytic self‐incompatibility. To learn more about Sli diversity and function in wild species relatives of cultivated potato, we obtained Sli gene sequences that extended from the 5′UTR to the 3′UTR from 133 individuals from 22 wild species relatives of potato and eight diverse cultivated potato clones. DNA sequence alignment and phylogenetic trees based on genomic and protein sequences show that there are two highly conserved groups of Sli sequences. DNA sequences in one group contain the 533 bp insertion upstream of the start codon identified previously in self‐compatible potato. The second group lacks the insertion. Three diploid and four polyploid individuals of wild species collected from geographically disjointed localities contained Sli with the 533 bp insertion. For most of the wild species clones examined, however, Sli did not have the insertion. Phylogenetic analysis indicated that Sli sequences with the insertion, in wild species and in cultivated clones, trace back to a single origin. Some diploid wild potatoes that have Sli with the insertion were self‐incompatible and some wild potatoes that lack the insertion were self‐compatible. Although there is evidence of positive selection for some codon positions in Sli, there is no evidence of diversifying selection at the gene level. In silico analysis of Sli protein structure did not support the hypothesis that amino acid changes from wild‐type (no insertion) to insertion‐type account for changes in protein function. Our study demonstrated that genetic factors besides the Sli gene must be important for conditioning a switch in the mating system from self‐incompatible to self‐compatible in wild potatoes.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 二倍体马铃薯的近交杂交育种需要培育自交系。在不相容的栽培马铃薯(Solanum tuberosum)种质中加入自相容性的一种方法是引入S-焦点抑制基因(Sli),该基因是配子体自相容性的显性抑制因子。为了进一步了解Sli在栽培马铃薯野生近缘种中的多样性和功能,我们从22个马铃薯野生近缘种和8个不同的栽培马铃薯克隆的133个个体中获得了从5′UTR延伸到3′UTR的Sli基因序列。基于基因组和蛋白质序列的DNA序列比对和系统发生树显示,有两组高度保守的Sli序列。其中一组的 DNA 序列含有先前在自交马铃薯中发现的起始密码子上游的 533 bp 插入物。第二组则没有插入物。从地理位置不相连的地方收集到的野生物种的三个二倍体和四个多倍体个体含有插入 533 bp 的 Sli。然而,在所研究的大多数野生物种克隆中,Sli 没有插入。系统发育分析表明,野生种和栽培克隆中带有插入片段的 Sli 序列可追溯到同一个起源。一些具有插入Sli的二倍体野生马铃薯是自交不亲和的,而一些没有插入Sli的野生马铃薯是自交不亲和的。虽然有证据表明 Sli 的某些密码子位置存在正选择,但没有证据表明在基因水平上存在多样化选择。对 Sli 蛋白结构的硅学分析不支持氨基酸从野生型(无插入)到插入型的变化导致蛋白质功能变化的假设。我们的研究表明,在野生马铃薯的交配系统从自交不相容到自交相容的转换过程中,除 Sli 基因之外的遗传因素也很重要。
A survey of the Sli gene in wild and cultivated potato
Abstract Inbred‐hybrid breeding of diploid potatoes necessitates breeding lines that are self‐compatible. One way of incorporating self‐compatibility into incompatible cultivated potato ( Solanum tuberosum ) germplasm is to introduce the S‐locus inhibitor gene (Sli), which functions as a dominant inhibitor of gametophytic self‐incompatibility. To learn more about Sli diversity and function in wild species relatives of cultivated potato, we obtained Sli gene sequences that extended from the 5′UTR to the 3′UTR from 133 individuals from 22 wild species relatives of potato and eight diverse cultivated potato clones. DNA sequence alignment and phylogenetic trees based on genomic and protein sequences show that there are two highly conserved groups of Sli sequences. DNA sequences in one group contain the 533 bp insertion upstream of the start codon identified previously in self‐compatible potato. The second group lacks the insertion. Three diploid and four polyploid individuals of wild species collected from geographically disjointed localities contained Sli with the 533 bp insertion. For most of the wild species clones examined, however, Sli did not have the insertion. Phylogenetic analysis indicated that Sli sequences with the insertion, in wild species and in cultivated clones, trace back to a single origin. Some diploid wild potatoes that have Sli with the insertion were self‐incompatible and some wild potatoes that lack the insertion were self‐compatible. Although there is evidence of positive selection for some codon positions in Sli, there is no evidence of diversifying selection at the gene level. In silico analysis of Sli protein structure did not support the hypothesis that amino acid changes from wild‐type (no insertion) to insertion‐type account for changes in protein function. Our study demonstrated that genetic factors besides the Sli gene must be important for conditioning a switch in the mating system from self‐incompatible to self‐compatible in wild potatoes.