通过烧结干粉印刷中空玻璃微球获得可定制的能量吸收细胞材料

IF 0.2 4区 材料科学 Q4 ENGINEERING, MULTIDISCIPLINARY
Norman Wereley, Jungjin Park, John Howard, Matthew DeMay, Avi Edery
{"title":"通过烧结干粉印刷中空玻璃微球获得可定制的能量吸收细胞材料","authors":"Norman Wereley, Jungjin Park, John Howard, Matthew DeMay, Avi Edery","doi":"10.33599/sj.v60no3.04","DOIUrl":null,"url":null,"abstract":"This article examines amorphous glass-based foams as lightweight core materials for crash-resistant structures that offer tailorable energy absorption capabilities. Hollow glass microspheres (HGMs) of different densities are layered using dry powder print- ing (DPP), an additive manufacturing process, and subsequently sintered to consolidate these microspheres into a cellular foam structure. The tuning of energy absorption is achieved in these foams by layering hollow microspheres with different densities and different thickness ratios of the layers. The mechanical response to quasi-static uniax- ial compression of the bilayer foams is also investigated. Bilayer samples a distinctive two-step stress-strain profile that includes first and second plateau stress, as opposed to a single constant density which does not. The strain at which the second plateau occurs can be tuned by adjusting the thickness ratio of the two layers. The resulting tailorable stress-strain profile demonstrates tailorable energy absorption. Tailorability is found to be more significant if the density values of each layer differ greatly. For comparison, bilayer samples are fabricated using epoxy at the interface instead of the co-sintering process. Epoxy-bonded samples show a different mechanical response from the co-sintered sample with a different stress-strain profile. Designing the bilayer foams enables tailoring of the stress-strain profile, so that energy-absorption requirements can be met for a specific impact condition. The implementation of these materials for energy absorption, crashworthiness, and buoyancy applications will be discussed.","PeriodicalId":49577,"journal":{"name":"SAMPE Journal","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailorable Energy Absorbing Cellular Materials via Sintering of Dry Powder Printed Hollow Glass Microspheres\",\"authors\":\"Norman Wereley, Jungjin Park, John Howard, Matthew DeMay, Avi Edery\",\"doi\":\"10.33599/sj.v60no3.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examines amorphous glass-based foams as lightweight core materials for crash-resistant structures that offer tailorable energy absorption capabilities. Hollow glass microspheres (HGMs) of different densities are layered using dry powder print- ing (DPP), an additive manufacturing process, and subsequently sintered to consolidate these microspheres into a cellular foam structure. The tuning of energy absorption is achieved in these foams by layering hollow microspheres with different densities and different thickness ratios of the layers. The mechanical response to quasi-static uniax- ial compression of the bilayer foams is also investigated. Bilayer samples a distinctive two-step stress-strain profile that includes first and second plateau stress, as opposed to a single constant density which does not. The strain at which the second plateau occurs can be tuned by adjusting the thickness ratio of the two layers. The resulting tailorable stress-strain profile demonstrates tailorable energy absorption. Tailorability is found to be more significant if the density values of each layer differ greatly. For comparison, bilayer samples are fabricated using epoxy at the interface instead of the co-sintering process. Epoxy-bonded samples show a different mechanical response from the co-sintered sample with a different stress-strain profile. Designing the bilayer foams enables tailoring of the stress-strain profile, so that energy-absorption requirements can be met for a specific impact condition. The implementation of these materials for energy absorption, crashworthiness, and buoyancy applications will be discussed.\",\"PeriodicalId\":49577,\"journal\":{\"name\":\"SAMPE Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAMPE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33599/sj.v60no3.04\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAMPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33599/sj.v60no3.04","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了非晶玻璃基泡沫作为抗撞结构的轻质芯材,可提供量身定制的能量吸收能力。不同密度的中空玻璃微球(HGMs)通过干粉打印(DPP)这一增材制造工艺进行分层,随后通过烧结将这些微球固化成蜂窝状泡沫结构。通过将不同密度和不同厚度比的空心微球分层,这些泡沫可实现能量吸收的调整。此外,还研究了双层泡沫对准静态单向压缩的机械响应。双层样品具有独特的两步应力-应变曲线,包括第一和第二高原应力,而单一的恒定密度则不包括第一和第二高原应力。可以通过调整两层的厚度比来调整出现第二高原的应变。由此产生的可定制应力-应变曲线展示了可定制的能量吸收。如果各层的密度值相差很大,则可定制性会更加显著。为了进行比较,在界面上使用环氧树脂而不是共烧结工艺制作了双层样品。环氧树脂粘结样品与共烧结样品的机械响应不同,应力应变曲线也不同。设计双层泡沫材料可以定制应力应变曲线,从而满足特定冲击条件下的能量吸收要求。我们将讨论这些材料在能量吸收、防撞和浮力应用方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailorable Energy Absorbing Cellular Materials via Sintering of Dry Powder Printed Hollow Glass Microspheres
This article examines amorphous glass-based foams as lightweight core materials for crash-resistant structures that offer tailorable energy absorption capabilities. Hollow glass microspheres (HGMs) of different densities are layered using dry powder print- ing (DPP), an additive manufacturing process, and subsequently sintered to consolidate these microspheres into a cellular foam structure. The tuning of energy absorption is achieved in these foams by layering hollow microspheres with different densities and different thickness ratios of the layers. The mechanical response to quasi-static uniax- ial compression of the bilayer foams is also investigated. Bilayer samples a distinctive two-step stress-strain profile that includes first and second plateau stress, as opposed to a single constant density which does not. The strain at which the second plateau occurs can be tuned by adjusting the thickness ratio of the two layers. The resulting tailorable stress-strain profile demonstrates tailorable energy absorption. Tailorability is found to be more significant if the density values of each layer differ greatly. For comparison, bilayer samples are fabricated using epoxy at the interface instead of the co-sintering process. Epoxy-bonded samples show a different mechanical response from the co-sintered sample with a different stress-strain profile. Designing the bilayer foams enables tailoring of the stress-strain profile, so that energy-absorption requirements can be met for a specific impact condition. The implementation of these materials for energy absorption, crashworthiness, and buoyancy applications will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAMPE Journal
SAMPE Journal 工程技术-材料科学:综合
CiteScore
0.16
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: SAMPE Journal readers represent the diversity of the advanced materials and processes industry. Our readers are creative and innovative, they publish, they develop concepts, they win patents, they move the world of materials and processes. Join thought leaders – academicians, engineers, scientists, business leaders, researchers, suppliers, manufacturers – and become a reader of the industry’s only technical journal dedicated to advanced materials and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信