镁 AZ31B 合金上 AA2024/Al2O3 涂层的冷喷加工:涂层的工艺参数优化、微观结构和粘接强度性能

Q1 Engineering
Ashokkumar Mohankumar , Duraisamy Thirumalaikumarasamy , Tushar Sonar , Mikhail Ivanov , Packkirisamy Vignesh , Rajangam Pavendhan , Mathanbabu Mariappan , Jinyang Xu
{"title":"镁 AZ31B 合金上 AA2024/Al2O3 涂层的冷喷加工:涂层的工艺参数优化、微观结构和粘接强度性能","authors":"Ashokkumar Mohankumar ,&nbsp;Duraisamy Thirumalaikumarasamy ,&nbsp;Tushar Sonar ,&nbsp;Mikhail Ivanov ,&nbsp;Packkirisamy Vignesh ,&nbsp;Rajangam Pavendhan ,&nbsp;Mathanbabu Mariappan ,&nbsp;Jinyang Xu","doi":"10.1016/j.ijlmm.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The automotive and aerospace sectors are progressively employing the magnesium (Mg) alloy of the grade AZ31B because of its excellent castability, low density, and high ratio of strength to weight. Nevertheless, the limited ability of AZ31B alloy to withstand corrosion limits their use in several fields of technology. In order to solve this problem, the AZ31B alloy is coated utilizing an AA2024/Al<sub>2</sub>O<sub>3</sub> metal matrix composite (MMC) coating that is applied by the cold spray coating (CS) method. The primary goal of this work is the parametric optimization of CS process for maximizing adhesive strength of MMC-coated Mg-alloy substrate. Response surface methodology (RSM) is implemented to find the optimum CS parameters, including feed rate of powder – FRP (g/min), standoff distance of gun – SDG (mm) and processing temperature – TEMP (°C). The regression-based parametric adhesion strength prediction (ASP) model was formulated using the RSM and statistically validated using analysis of variance (ANOVA). Employing 3D surface of responses, the influence of CS parameters on the adhesion strength of an MMC-coating was assessed. The findings revealed that when the MMC-coating was cold sprayed on the Mg-alloy using FRP of 22 g/min, SDG of 12 mm, and TEMP of 520 °C, the maximum adhesion strength of MMC-coating was 70 MPa (actual). Given less than 2% error at 95% confidence, the parametric ASP model correctly predicted the adhesion strength of the MMC-coating. The ANOVA findings showed that FRP (g/min) had significant effect on adhesive strength of MMC-coating followed by SDG (mm) and TEMP (°C). The MMC-coating applied using the RSM optimized CS parameters showed 70.73% superior adhesive strength owing to the lower porosity formation of 2 vol% which offers greater interfacial area. The ASP equation was formulated using the “best fitting line” approach and validated using ANOVA for predicting the adhesive strength (MPa) from the porosity formation (vol%) in the MMC-coating.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"7 5","pages":"Pages 721-737"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840424000416/pdfft?md5=df694c292b2ac24393733a75fba1c9cd&pid=1-s2.0-S2588840424000416-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cold spray processing of AA2024/Al2O3 coating on magnesium AZ31B alloy: Process parameters optimization, microstructure and adhesive strength performance of coating\",\"authors\":\"Ashokkumar Mohankumar ,&nbsp;Duraisamy Thirumalaikumarasamy ,&nbsp;Tushar Sonar ,&nbsp;Mikhail Ivanov ,&nbsp;Packkirisamy Vignesh ,&nbsp;Rajangam Pavendhan ,&nbsp;Mathanbabu Mariappan ,&nbsp;Jinyang Xu\",\"doi\":\"10.1016/j.ijlmm.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The automotive and aerospace sectors are progressively employing the magnesium (Mg) alloy of the grade AZ31B because of its excellent castability, low density, and high ratio of strength to weight. Nevertheless, the limited ability of AZ31B alloy to withstand corrosion limits their use in several fields of technology. In order to solve this problem, the AZ31B alloy is coated utilizing an AA2024/Al<sub>2</sub>O<sub>3</sub> metal matrix composite (MMC) coating that is applied by the cold spray coating (CS) method. The primary goal of this work is the parametric optimization of CS process for maximizing adhesive strength of MMC-coated Mg-alloy substrate. Response surface methodology (RSM) is implemented to find the optimum CS parameters, including feed rate of powder – FRP (g/min), standoff distance of gun – SDG (mm) and processing temperature – TEMP (°C). The regression-based parametric adhesion strength prediction (ASP) model was formulated using the RSM and statistically validated using analysis of variance (ANOVA). Employing 3D surface of responses, the influence of CS parameters on the adhesion strength of an MMC-coating was assessed. The findings revealed that when the MMC-coating was cold sprayed on the Mg-alloy using FRP of 22 g/min, SDG of 12 mm, and TEMP of 520 °C, the maximum adhesion strength of MMC-coating was 70 MPa (actual). Given less than 2% error at 95% confidence, the parametric ASP model correctly predicted the adhesion strength of the MMC-coating. The ANOVA findings showed that FRP (g/min) had significant effect on adhesive strength of MMC-coating followed by SDG (mm) and TEMP (°C). The MMC-coating applied using the RSM optimized CS parameters showed 70.73% superior adhesive strength owing to the lower porosity formation of 2 vol% which offers greater interfacial area. The ASP equation was formulated using the “best fitting line” approach and validated using ANOVA for predicting the adhesive strength (MPa) from the porosity formation (vol%) in the MMC-coating.</p></div>\",\"PeriodicalId\":52306,\"journal\":{\"name\":\"International Journal of Lightweight Materials and Manufacture\",\"volume\":\"7 5\",\"pages\":\"Pages 721-737\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588840424000416/pdfft?md5=df694c292b2ac24393733a75fba1c9cd&pid=1-s2.0-S2588840424000416-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lightweight Materials and Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588840424000416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

由于 AZ31B 牌号的镁(Mg)合金具有出色的可铸造性、低密度和高强度重量比,汽车和航空航天领域正在逐步采用这种合金。然而,AZ31B 合金的耐腐蚀能力有限,限制了其在多个技术领域的应用。为了解决这个问题,AZ31B 合金采用了一种 AA2024/Al2O3 金属基复合材料(MMC)涂层,该涂层是通过冷喷涂层(CS)方法涂覆的。这项工作的主要目标是对 CS 工艺进行参数优化,以最大限度地提高 MMC 涂层镁合金基材的粘合强度。采用响应面方法(RSM)找出最佳的 CS 参数,包括粉末进料速率 - FRP(克/分钟)、喷枪间距 - SDG(毫米)和加工温度 - TEMP(摄氏度)。使用 RSM 建立了基于回归的参数附着强度预测 (ASP) 模型,并使用方差分析 (ANOVA) 进行了统计验证。利用三维反应曲面,评估了 CS 参数对 MMC 涂层附着强度的影响。研究结果表明,当使用 FRP 为 22 克/分钟、SDG 为 12 毫米、TEMP 为 520 ℃ 在镁合金上冷喷 MMC 涂层时,MMC 涂层的最大附着强度为 70 兆帕(实际值)。在 95% 的置信度下,误差小于 2%,参数 ASP 模型正确预测了 MMC 涂层的附着强度。方差分析结果表明,FRP(克/分钟)对 MMC 涂层的附着强度有显著影响,其次是 SDG(毫米)和温度(摄氏度)。采用 RSM 优化 CS 参数的 MMC 涂层显示出 70.73% 的粘接强度,这是因为 2 Vol% 的孔隙率较低,提供了更大的界面面积。利用 "最佳拟合线 "方法制定了 ASP 方程,并通过方差分析验证了根据 MMC 涂层的孔隙率(体积百分比)预测粘合强度(兆帕)的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cold spray processing of AA2024/Al2O3 coating on magnesium AZ31B alloy: Process parameters optimization, microstructure and adhesive strength performance of coating

The automotive and aerospace sectors are progressively employing the magnesium (Mg) alloy of the grade AZ31B because of its excellent castability, low density, and high ratio of strength to weight. Nevertheless, the limited ability of AZ31B alloy to withstand corrosion limits their use in several fields of technology. In order to solve this problem, the AZ31B alloy is coated utilizing an AA2024/Al2O3 metal matrix composite (MMC) coating that is applied by the cold spray coating (CS) method. The primary goal of this work is the parametric optimization of CS process for maximizing adhesive strength of MMC-coated Mg-alloy substrate. Response surface methodology (RSM) is implemented to find the optimum CS parameters, including feed rate of powder – FRP (g/min), standoff distance of gun – SDG (mm) and processing temperature – TEMP (°C). The regression-based parametric adhesion strength prediction (ASP) model was formulated using the RSM and statistically validated using analysis of variance (ANOVA). Employing 3D surface of responses, the influence of CS parameters on the adhesion strength of an MMC-coating was assessed. The findings revealed that when the MMC-coating was cold sprayed on the Mg-alloy using FRP of 22 g/min, SDG of 12 mm, and TEMP of 520 °C, the maximum adhesion strength of MMC-coating was 70 MPa (actual). Given less than 2% error at 95% confidence, the parametric ASP model correctly predicted the adhesion strength of the MMC-coating. The ANOVA findings showed that FRP (g/min) had significant effect on adhesive strength of MMC-coating followed by SDG (mm) and TEMP (°C). The MMC-coating applied using the RSM optimized CS parameters showed 70.73% superior adhesive strength owing to the lower porosity formation of 2 vol% which offers greater interfacial area. The ASP equation was formulated using the “best fitting line” approach and validated using ANOVA for predicting the adhesive strength (MPa) from the porosity formation (vol%) in the MMC-coating.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信