{"title":"翼形墙障碍物对手动避障的方向性影响","authors":"Yuki Harada, Hiroyuki Mitsudo","doi":"10.1177/20416695241254959","DOIUrl":null,"url":null,"abstract":"Visual information can be used to plan, start, and coordinate manual movements in obstacle avoidance. An intriguing example of visuomotor coordination is the effect of wing-shaped walls, in which walls are oriented away from or toward a moving agent. A historical story from medieval Japan recounts that wing-shaped walls disrupted the agent's movement more when oriented toward the agent than when oriented away from the agent. This study aimed at examining whether the disruptive effect of wing-shaped walls occurs in a schematic situation represented on a 2D plane. In this study, we conducted psychophysical experiments in which participants were asked to move a stylus from a start point to a goal while avoiding multiple line obstacles that were arranged alternately at a course. In the two experiments, we manipulated the orientation and the size of the visible parts of the obstacles systematically. We found that the obstacles oriented toward the agent produced frequent contacts with the agent and attracted manual movements to the endpoints of obstacles. We discussed possible interpretations of the results in the context of attentional guidance.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wing-shaped walls: A directional effect of obstacles on manual avoidance\",\"authors\":\"Yuki Harada, Hiroyuki Mitsudo\",\"doi\":\"10.1177/20416695241254959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual information can be used to plan, start, and coordinate manual movements in obstacle avoidance. An intriguing example of visuomotor coordination is the effect of wing-shaped walls, in which walls are oriented away from or toward a moving agent. A historical story from medieval Japan recounts that wing-shaped walls disrupted the agent's movement more when oriented toward the agent than when oriented away from the agent. This study aimed at examining whether the disruptive effect of wing-shaped walls occurs in a schematic situation represented on a 2D plane. In this study, we conducted psychophysical experiments in which participants were asked to move a stylus from a start point to a goal while avoiding multiple line obstacles that were arranged alternately at a course. In the two experiments, we manipulated the orientation and the size of the visible parts of the obstacles systematically. We found that the obstacles oriented toward the agent produced frequent contacts with the agent and attracted manual movements to the endpoints of obstacles. We discussed possible interpretations of the results in the context of attentional guidance.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/20416695241254959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/20416695241254959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Wing-shaped walls: A directional effect of obstacles on manual avoidance
Visual information can be used to plan, start, and coordinate manual movements in obstacle avoidance. An intriguing example of visuomotor coordination is the effect of wing-shaped walls, in which walls are oriented away from or toward a moving agent. A historical story from medieval Japan recounts that wing-shaped walls disrupted the agent's movement more when oriented toward the agent than when oriented away from the agent. This study aimed at examining whether the disruptive effect of wing-shaped walls occurs in a schematic situation represented on a 2D plane. In this study, we conducted psychophysical experiments in which participants were asked to move a stylus from a start point to a goal while avoiding multiple line obstacles that were arranged alternately at a course. In the two experiments, we manipulated the orientation and the size of the visible parts of the obstacles systematically. We found that the obstacles oriented toward the agent produced frequent contacts with the agent and attracted manual movements to the endpoints of obstacles. We discussed possible interpretations of the results in the context of attentional guidance.