深水高温高压油气井双套管射孔动态模拟

IF 6 1区 工程技术 Q2 ENERGY & FUELS
{"title":"深水高温高压油气井双套管射孔动态模拟","authors":"","doi":"10.1016/j.petsci.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforation using ANSYS/LS-DYNA simulation technology. The combination of critical perforation parameters for double casing is obtained by studying the influencing factors of the jet-forming process, perforation depth, diameter, and stress changes of the inner and outer casing. The single-target perforation experiments under high-temperature and high-pressure (HTHP) conditions and ground full-scale ring target perforation tests are designed to verify the accuracy of numerical simulation results. The reduced factor is adopted as the quantitative measure of perforation depth and diameter for different types of perforation charge under different conditions. The results show that the perforation depth reduction increases with temperature and pressure, and the reduced factor is between 0.67 and 0.87 under HTHP conditions of 130 °C/44 MPa and 137 °C/60 MPa. Comparing the results of the numerical simulation and the full-scale test correction, the maximum error is less than 8.91%, and this numerical simulation has strong reliability. This research provides a basis for a reasonable range of double-cased perforation parameters and their optimal selection.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"21 5","pages":"Pages 3482-3495"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic simulation of double-cased perforation in deepwater high temperature and high-pressure oil and gas wells\",\"authors\":\"\",\"doi\":\"10.1016/j.petsci.2024.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforation using ANSYS/LS-DYNA simulation technology. The combination of critical perforation parameters for double casing is obtained by studying the influencing factors of the jet-forming process, perforation depth, diameter, and stress changes of the inner and outer casing. The single-target perforation experiments under high-temperature and high-pressure (HTHP) conditions and ground full-scale ring target perforation tests are designed to verify the accuracy of numerical simulation results. The reduced factor is adopted as the quantitative measure of perforation depth and diameter for different types of perforation charge under different conditions. The results show that the perforation depth reduction increases with temperature and pressure, and the reduced factor is between 0.67 and 0.87 under HTHP conditions of 130 °C/44 MPa and 137 °C/60 MPa. Comparing the results of the numerical simulation and the full-scale test correction, the maximum error is less than 8.91%, and this numerical simulation has strong reliability. This research provides a basis for a reasonable range of double-cased perforation parameters and their optimal selection.</div></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":\"21 5\",\"pages\":\"Pages 3482-3495\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624001250\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624001250","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为确保海上油气田双套管射孔的可穿透性,最大限度地提高射孔完井能力,本研究利用 ANSYS/LS-DYNA 仿真技术建立了双套管射孔动态模型。通过研究射流形成过程、射孔深度、直径、内外套管应力变化等影响因素,得出了双套管关键射孔参数组合。为验证数值模拟结果的准确性,设计了高温高压(HTHP)条件下的单靶射孔试验和地面全尺寸环靶射孔试验。针对不同条件下不同类型的射孔装药,采用减径系数作为射孔深度和直径的量化指标。结果表明,射孔深度减小系数随温度和压力的升高而增大,在 130 °C/44 MPa 和 137 °C/60 MPa 的 HTHP 条件下,减小系数介于 0.67 和 0.87 之间。数值模拟结果与全尺寸试验修正结果比较,最大误差小于 8.91%,数值模拟具有较强的可靠性。该研究为双套管穿孔参数的合理范围及其优化选择提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic simulation of double-cased perforation in deepwater high temperature and high-pressure oil and gas wells
In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforation using ANSYS/LS-DYNA simulation technology. The combination of critical perforation parameters for double casing is obtained by studying the influencing factors of the jet-forming process, perforation depth, diameter, and stress changes of the inner and outer casing. The single-target perforation experiments under high-temperature and high-pressure (HTHP) conditions and ground full-scale ring target perforation tests are designed to verify the accuracy of numerical simulation results. The reduced factor is adopted as the quantitative measure of perforation depth and diameter for different types of perforation charge under different conditions. The results show that the perforation depth reduction increases with temperature and pressure, and the reduced factor is between 0.67 and 0.87 under HTHP conditions of 130 °C/44 MPa and 137 °C/60 MPa. Comparing the results of the numerical simulation and the full-scale test correction, the maximum error is less than 8.91%, and this numerical simulation has strong reliability. This research provides a basis for a reasonable range of double-cased perforation parameters and their optimal selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Science
Petroleum Science 地学-地球化学与地球物理
CiteScore
7.70
自引率
16.10%
发文量
311
审稿时长
63 days
期刊介绍: Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信