Jiaming Yu , Yue Zhang , Li Zhang , Jie Shi , Kun Wang , Weize Yuan , Zexu Lin , Shangqian Ning , Bohao Wang , Xinye Wang , Yuyang Qiu , Tom Hsiang , Lixin Zhang , Xueting Liu , Guoliang Zhu
{"title":"从茶叶根部提取的新型 N-酰化氨基烷酸生物控制剂 Clonostachys rosea 15020","authors":"Jiaming Yu , Yue Zhang , Li Zhang , Jie Shi , Kun Wang , Weize Yuan , Zexu Lin , Shangqian Ning , Bohao Wang , Xinye Wang , Yuyang Qiu , Tom Hsiang , Lixin Zhang , Xueting Liu , Guoliang Zhu","doi":"10.1016/j.synbio.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>Four new <em>N</em>-acylated aminoalkanoic acids, namely clonoroseins E−H (<strong>1</strong>−<strong>4</strong>), together with three previously identified analogs, clonoroseins A, B, and D (<strong>5</strong>−<strong>7</strong>), were identified from the endophytic fungus <em>Clonostachys rosea</em> strain 15020 (CR15020), using Feature-based Molecular Networking (FBMN). The elucidation of their chemical structures, including their absolute configurations, was achieved through spectroscopic analysis combined with quantum chemical calculations. Bioinformatics analyses suggested that an iterative type I HR-PKS (CrsE) generates the polyketide side chain of these clonoroseins. Furthermore, a downstream adenylate-forming enzyme of the PKS (CrsD) was suspected to function as an amide synthetase. CrsD potentially facilitates the transformation of the polyketide moiety into an acyl-AMP intermediate, followed by nucleophilic substitution with either β-alanine or γ-aminobutyric acid to produce amide derivatives. These findings significantly expand our understanding of PKS-related products originating from <em>C. rosea</em> and also underscore the powerful application of FBMN analytical methods in characterization of new compounds.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 4","pages":"Pages 684-693"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000814/pdfft?md5=01cef55bed96e72c42a2b3604900de88&pid=1-s2.0-S2405805X24000814-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New N-acylated aminoalkanoic acids from tea roots derived biocontrol agent Clonostachys rosea 15020\",\"authors\":\"Jiaming Yu , Yue Zhang , Li Zhang , Jie Shi , Kun Wang , Weize Yuan , Zexu Lin , Shangqian Ning , Bohao Wang , Xinye Wang , Yuyang Qiu , Tom Hsiang , Lixin Zhang , Xueting Liu , Guoliang Zhu\",\"doi\":\"10.1016/j.synbio.2024.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Four new <em>N</em>-acylated aminoalkanoic acids, namely clonoroseins E−H (<strong>1</strong>−<strong>4</strong>), together with three previously identified analogs, clonoroseins A, B, and D (<strong>5</strong>−<strong>7</strong>), were identified from the endophytic fungus <em>Clonostachys rosea</em> strain 15020 (CR15020), using Feature-based Molecular Networking (FBMN). The elucidation of their chemical structures, including their absolute configurations, was achieved through spectroscopic analysis combined with quantum chemical calculations. Bioinformatics analyses suggested that an iterative type I HR-PKS (CrsE) generates the polyketide side chain of these clonoroseins. Furthermore, a downstream adenylate-forming enzyme of the PKS (CrsD) was suspected to function as an amide synthetase. CrsD potentially facilitates the transformation of the polyketide moiety into an acyl-AMP intermediate, followed by nucleophilic substitution with either β-alanine or γ-aminobutyric acid to produce amide derivatives. These findings significantly expand our understanding of PKS-related products originating from <em>C. rosea</em> and also underscore the powerful application of FBMN analytical methods in characterization of new compounds.</p></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"9 4\",\"pages\":\"Pages 684-693\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000814/pdfft?md5=01cef55bed96e72c42a2b3604900de88&pid=1-s2.0-S2405805X24000814-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000814\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24000814","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
New N-acylated aminoalkanoic acids from tea roots derived biocontrol agent Clonostachys rosea 15020
Four new N-acylated aminoalkanoic acids, namely clonoroseins E−H (1−4), together with three previously identified analogs, clonoroseins A, B, and D (5−7), were identified from the endophytic fungus Clonostachys rosea strain 15020 (CR15020), using Feature-based Molecular Networking (FBMN). The elucidation of their chemical structures, including their absolute configurations, was achieved through spectroscopic analysis combined with quantum chemical calculations. Bioinformatics analyses suggested that an iterative type I HR-PKS (CrsE) generates the polyketide side chain of these clonoroseins. Furthermore, a downstream adenylate-forming enzyme of the PKS (CrsD) was suspected to function as an amide synthetase. CrsD potentially facilitates the transformation of the polyketide moiety into an acyl-AMP intermediate, followed by nucleophilic substitution with either β-alanine or γ-aminobutyric acid to produce amide derivatives. These findings significantly expand our understanding of PKS-related products originating from C. rosea and also underscore the powerful application of FBMN analytical methods in characterization of new compounds.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.