Hong-Yun Zhang , Wei-Dan Jiang , Pei Wu , Yang Liu , Hong-Mei Ren , Xiao-Wan Jin , Xiao-Qiu Zhou , Lin Feng
{"title":"在斑马鱼模型筛选中发现高效天然霉菌毒素解毒剂,以对抗玉米赤霉烯酮诱导的毒性","authors":"Hong-Yun Zhang , Wei-Dan Jiang , Pei Wu , Yang Liu , Hong-Mei Ren , Xiao-Wan Jin , Xiao-Qiu Zhou , Lin Feng","doi":"10.1016/j.eng.2024.03.016","DOIUrl":null,"url":null,"abstract":"<div><div>Zearalenone (ZEA), a mycotoxin, poses a significant global hazard to human and animal health. Natural products (NPs) have shown promise for mitigating the adverse effects of ZEA owing to their diverse functional activities. However, the current challenge lies in the absence of an efficient strategy for systematic screening and identification of NPs that can effectively protect against ZEA-induced toxicity. This study describes a phenotype-based screening strategy for screening NP libraries and discovering more effective compounds to mitigate or counteract the adverse consequences of ZEA exposure in animals. Using this strategy, we initially identified 96 NPs and evaluated the potency and efficacy of two effective candidate compounds, fraxetin, and hydroxytyrosol, based on embryonic phenotype and locomotor activity using a scoring system and the TCMacro method. Furthermore, we performed transcriptome and protein−protein interaction (PPI) network analyses to extract two mRNA signatures to query the Connectivity Map (CMap) database and predict NPs. The predicted NPs showed the potential to reverse the gene expression profiles associated with ZEA toxicity. Consequently, we further screened these compounds using our model, which indicated that hispidin, daphnetin, and riboflavin exhibit promising <em>in vivo</em> efficacy in zebrafish. Notably, throughout the process, fraxetin consistently stood out as the most promising NP. Biological pathway analysis and functional verification revealed that fraxetin completely reversed the toxic effects of ZEA at very low doses. This was achieved by repairing damaged cell apoptosis, modifying the cell cycle pathway, and preventing senescence induction, indicating good application potential. Overall, we demonstrated that this integration strategy can be successfully applied to effectively discover potential antidotes.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"42 ","pages":"Pages 196-212"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing High-Efficiency Natural Mycotoxin Antidotes in Zebrafish Model Screening Against Zearalenone-Induced Toxicity\",\"authors\":\"Hong-Yun Zhang , Wei-Dan Jiang , Pei Wu , Yang Liu , Hong-Mei Ren , Xiao-Wan Jin , Xiao-Qiu Zhou , Lin Feng\",\"doi\":\"10.1016/j.eng.2024.03.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zearalenone (ZEA), a mycotoxin, poses a significant global hazard to human and animal health. Natural products (NPs) have shown promise for mitigating the adverse effects of ZEA owing to their diverse functional activities. However, the current challenge lies in the absence of an efficient strategy for systematic screening and identification of NPs that can effectively protect against ZEA-induced toxicity. This study describes a phenotype-based screening strategy for screening NP libraries and discovering more effective compounds to mitigate or counteract the adverse consequences of ZEA exposure in animals. Using this strategy, we initially identified 96 NPs and evaluated the potency and efficacy of two effective candidate compounds, fraxetin, and hydroxytyrosol, based on embryonic phenotype and locomotor activity using a scoring system and the TCMacro method. Furthermore, we performed transcriptome and protein−protein interaction (PPI) network analyses to extract two mRNA signatures to query the Connectivity Map (CMap) database and predict NPs. The predicted NPs showed the potential to reverse the gene expression profiles associated with ZEA toxicity. Consequently, we further screened these compounds using our model, which indicated that hispidin, daphnetin, and riboflavin exhibit promising <em>in vivo</em> efficacy in zebrafish. Notably, throughout the process, fraxetin consistently stood out as the most promising NP. Biological pathway analysis and functional verification revealed that fraxetin completely reversed the toxic effects of ZEA at very low doses. This was achieved by repairing damaged cell apoptosis, modifying the cell cycle pathway, and preventing senescence induction, indicating good application potential. Overall, we demonstrated that this integration strategy can be successfully applied to effectively discover potential antidotes.</div></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"42 \",\"pages\":\"Pages 196-212\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209580992400256X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209580992400256X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Revealing High-Efficiency Natural Mycotoxin Antidotes in Zebrafish Model Screening Against Zearalenone-Induced Toxicity
Zearalenone (ZEA), a mycotoxin, poses a significant global hazard to human and animal health. Natural products (NPs) have shown promise for mitigating the adverse effects of ZEA owing to their diverse functional activities. However, the current challenge lies in the absence of an efficient strategy for systematic screening and identification of NPs that can effectively protect against ZEA-induced toxicity. This study describes a phenotype-based screening strategy for screening NP libraries and discovering more effective compounds to mitigate or counteract the adverse consequences of ZEA exposure in animals. Using this strategy, we initially identified 96 NPs and evaluated the potency and efficacy of two effective candidate compounds, fraxetin, and hydroxytyrosol, based on embryonic phenotype and locomotor activity using a scoring system and the TCMacro method. Furthermore, we performed transcriptome and protein−protein interaction (PPI) network analyses to extract two mRNA signatures to query the Connectivity Map (CMap) database and predict NPs. The predicted NPs showed the potential to reverse the gene expression profiles associated with ZEA toxicity. Consequently, we further screened these compounds using our model, which indicated that hispidin, daphnetin, and riboflavin exhibit promising in vivo efficacy in zebrafish. Notably, throughout the process, fraxetin consistently stood out as the most promising NP. Biological pathway analysis and functional verification revealed that fraxetin completely reversed the toxic effects of ZEA at very low doses. This was achieved by repairing damaged cell apoptosis, modifying the cell cycle pathway, and preventing senescence induction, indicating good application potential. Overall, we demonstrated that this integration strategy can be successfully applied to effectively discover potential antidotes.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.