量化断层解释的不确定性及其对断层密封和地震危险分析的影响

IF 2.6 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Billy J. Andrews , Zoë K. Mildon , Christopher A.L. Jackson , Clare E. Bond
{"title":"量化断层解释的不确定性及其对断层密封和地震危险分析的影响","authors":"Billy J. Andrews ,&nbsp;Zoë K. Mildon ,&nbsp;Christopher A.L. Jackson ,&nbsp;Clare E. Bond","doi":"10.1016/j.jsg.2024.105158","DOIUrl":null,"url":null,"abstract":"<div><p>Fault-horizon cut-off data extracted from seismic reflection datasets are used to study normal fault geometry, displacement distribution, and growth history. We assess the influence of three seismic interpretation factors (repeatability, measurement obliquity, and fault cut-off type) on fault parameter uncertainty. Two repeat interpretations resulted in mean differences of 5–15% for throw, 11–42% for heave, 9–31% for displacement, and 7–27% for dip across faults. Measurement obliquity, where faults are interpreted using non-perpendicular transects to fault strike, show increasing uncertainty with increasing obliquity. Uncertainty in throw is 14–24% at obliquities &gt;20° and 6–13% where obliquities &lt;20°. Continuous cut-offs, including non-discrete deformation, generally exhibit greater uncertainties compared to discontinuous (discrete) cut-offs. We consider the effect of interpretation factors on fault parameters used in seismic hazard assessment (SHA) and fault seal, using the established Shale Gouge Ratio (SGR). Even modest measurement obliquities and repeatability errors can affect inputs for SHA, causing large differences in throw- or slip-rate and inferred fault length. Measurement obliquity and repeatability have a variable impact on SGR calculations, highlighting the additional importance of sedimentary layer thickness and distribution. Our findings raise questions about the optimum workflow used to interpret faults and how uncertainties in fault interpretation are constrained and reported.</p></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S019181412400110X/pdfft?md5=b196fca8167bb43bdc9add543af2c730&pid=1-s2.0-S019181412400110X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantifying fault interpretation uncertainties and their impact on fault seal and seismic hazard analysis\",\"authors\":\"Billy J. Andrews ,&nbsp;Zoë K. Mildon ,&nbsp;Christopher A.L. Jackson ,&nbsp;Clare E. Bond\",\"doi\":\"10.1016/j.jsg.2024.105158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fault-horizon cut-off data extracted from seismic reflection datasets are used to study normal fault geometry, displacement distribution, and growth history. We assess the influence of three seismic interpretation factors (repeatability, measurement obliquity, and fault cut-off type) on fault parameter uncertainty. Two repeat interpretations resulted in mean differences of 5–15% for throw, 11–42% for heave, 9–31% for displacement, and 7–27% for dip across faults. Measurement obliquity, where faults are interpreted using non-perpendicular transects to fault strike, show increasing uncertainty with increasing obliquity. Uncertainty in throw is 14–24% at obliquities &gt;20° and 6–13% where obliquities &lt;20°. Continuous cut-offs, including non-discrete deformation, generally exhibit greater uncertainties compared to discontinuous (discrete) cut-offs. We consider the effect of interpretation factors on fault parameters used in seismic hazard assessment (SHA) and fault seal, using the established Shale Gouge Ratio (SGR). Even modest measurement obliquities and repeatability errors can affect inputs for SHA, causing large differences in throw- or slip-rate and inferred fault length. Measurement obliquity and repeatability have a variable impact on SGR calculations, highlighting the additional importance of sedimentary layer thickness and distribution. Our findings raise questions about the optimum workflow used to interpret faults and how uncertainties in fault interpretation are constrained and reported.</p></div>\",\"PeriodicalId\":50035,\"journal\":{\"name\":\"Journal of Structural Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S019181412400110X/pdfft?md5=b196fca8167bb43bdc9add543af2c730&pid=1-s2.0-S019181412400110X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019181412400110X\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019181412400110X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从地震反射数据集提取的断层-地层截断数据用于研究正断层的几何形状、位移分布和生长历史。我们评估了三个地震解释因素(重复性、测量斜度和断层截断类型)对断层参数不确定性的影响。两次重复解释的结果是,各断层的抛掷度平均相差 5-15%,隆起度平均相差 11-42%,位移平均相差 9-31%,倾角平均相差 7-27%。在使用与断层走向不垂直的横断面解释断层时,测量斜度显示不确定性随着斜度的增加而增加。在倾角为 20°时,投掷的不确定性为 14-24%,在倾角为 20°时,投掷的不确定性为 6-13%。与不连续(离散)截距相比,连续截距(包括非离散变形)通常表现出更大的不确定性。我们考虑了解释因素对地震危险性评估(SHA)和断层密封中使用的断层参数的影响,并使用了已建立的页岩咬合比(SGR)。即使是微小的测量斜度和重复性误差也会影响地震危险性评估的输入,导致抛掷率或滑移率和推断断层长度的巨大差异。测量斜度和重复性对 SGR 计算的影响不尽相同,突出了沉积层厚度和分布的重要性。我们的研究结果提出了用于解释断层的最佳工作流程以及如何限制和报告断层解释中的不确定性等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying fault interpretation uncertainties and their impact on fault seal and seismic hazard analysis

Fault-horizon cut-off data extracted from seismic reflection datasets are used to study normal fault geometry, displacement distribution, and growth history. We assess the influence of three seismic interpretation factors (repeatability, measurement obliquity, and fault cut-off type) on fault parameter uncertainty. Two repeat interpretations resulted in mean differences of 5–15% for throw, 11–42% for heave, 9–31% for displacement, and 7–27% for dip across faults. Measurement obliquity, where faults are interpreted using non-perpendicular transects to fault strike, show increasing uncertainty with increasing obliquity. Uncertainty in throw is 14–24% at obliquities >20° and 6–13% where obliquities <20°. Continuous cut-offs, including non-discrete deformation, generally exhibit greater uncertainties compared to discontinuous (discrete) cut-offs. We consider the effect of interpretation factors on fault parameters used in seismic hazard assessment (SHA) and fault seal, using the established Shale Gouge Ratio (SGR). Even modest measurement obliquities and repeatability errors can affect inputs for SHA, causing large differences in throw- or slip-rate and inferred fault length. Measurement obliquity and repeatability have a variable impact on SGR calculations, highlighting the additional importance of sedimentary layer thickness and distribution. Our findings raise questions about the optimum workflow used to interpret faults and how uncertainties in fault interpretation are constrained and reported.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Structural Geology
Journal of Structural Geology 地学-地球科学综合
CiteScore
6.00
自引率
19.40%
发文量
192
审稿时长
15.7 weeks
期刊介绍: The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信