用于骨重建的微创植入式生物材料

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Feng Han , Zhao Liu , Qiang Wei , Luguang Ding , Li Yu , Jiayuan Wang , Huan Wang , Weidong Zhang , Yingkang Yu , Yantao Zhao , Song Chen , Bin Li
{"title":"用于骨重建的微创植入式生物材料","authors":"Feng Han ,&nbsp;Zhao Liu ,&nbsp;Qiang Wei ,&nbsp;Luguang Ding ,&nbsp;Li Yu ,&nbsp;Jiayuan Wang ,&nbsp;Huan Wang ,&nbsp;Weidong Zhang ,&nbsp;Yingkang Yu ,&nbsp;Yantao Zhao ,&nbsp;Song Chen ,&nbsp;Bin Li","doi":"10.1016/j.eng.2024.01.031","DOIUrl":null,"url":null,"abstract":"<div><div>Bone injuries induced by accidents or bone-related disease have dramatically increased in the past decades. The application of biomaterials has become an inextricable part of treatment for new bone formation and regeneration. Different from traditional bone-regeneration materials, injectable biomaterials—ranging from bioceramics to polymers—have been applied as a means of promoting surgery with a minimal intervention approach. In this review, we summarize the most recent developments in minimally invasive implantable biomaterials for bone reconstruction and different ways to achieve osteogenesis, with a focus on injectable biomaterials for various applications in the orthopedic field. More specifically, bioceramics and polymeric materials, together with their applications in bone fracture healing, vertebral body augmentation, bone implant fixation, bone tumor therapy, and bone-defect-related infection treatment are reviewed in detail. Recent progress in injectable biomaterials with multiple functionalities and bioresponsive properties is also reviewed. Finally, we summarize the challenges in this field and future directions for clinical treatment.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"46 ","pages":"Pages 23-46"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimally Invasive Implantable Biomaterials for Bone Reconstruction\",\"authors\":\"Feng Han ,&nbsp;Zhao Liu ,&nbsp;Qiang Wei ,&nbsp;Luguang Ding ,&nbsp;Li Yu ,&nbsp;Jiayuan Wang ,&nbsp;Huan Wang ,&nbsp;Weidong Zhang ,&nbsp;Yingkang Yu ,&nbsp;Yantao Zhao ,&nbsp;Song Chen ,&nbsp;Bin Li\",\"doi\":\"10.1016/j.eng.2024.01.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bone injuries induced by accidents or bone-related disease have dramatically increased in the past decades. The application of biomaterials has become an inextricable part of treatment for new bone formation and regeneration. Different from traditional bone-regeneration materials, injectable biomaterials—ranging from bioceramics to polymers—have been applied as a means of promoting surgery with a minimal intervention approach. In this review, we summarize the most recent developments in minimally invasive implantable biomaterials for bone reconstruction and different ways to achieve osteogenesis, with a focus on injectable biomaterials for various applications in the orthopedic field. More specifically, bioceramics and polymeric materials, together with their applications in bone fracture healing, vertebral body augmentation, bone implant fixation, bone tumor therapy, and bone-defect-related infection treatment are reviewed in detail. Recent progress in injectable biomaterials with multiple functionalities and bioresponsive properties is also reviewed. Finally, we summarize the challenges in this field and future directions for clinical treatment.</div></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"46 \",\"pages\":\"Pages 23-46\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924002534\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002534","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimally Invasive Implantable Biomaterials for Bone Reconstruction
Bone injuries induced by accidents or bone-related disease have dramatically increased in the past decades. The application of biomaterials has become an inextricable part of treatment for new bone formation and regeneration. Different from traditional bone-regeneration materials, injectable biomaterials—ranging from bioceramics to polymers—have been applied as a means of promoting surgery with a minimal intervention approach. In this review, we summarize the most recent developments in minimally invasive implantable biomaterials for bone reconstruction and different ways to achieve osteogenesis, with a focus on injectable biomaterials for various applications in the orthopedic field. More specifically, bioceramics and polymeric materials, together with their applications in bone fracture healing, vertebral body augmentation, bone implant fixation, bone tumor therapy, and bone-defect-related infection treatment are reviewed in detail. Recent progress in injectable biomaterials with multiple functionalities and bioresponsive properties is also reviewed. Finally, we summarize the challenges in this field and future directions for clinical treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信