MSO-DETR:用于少镜头物体检测的度量空间优化

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haifeng Sima, Manyang Wang, Lanlan Liu, Yu-dong Zhang, Junding Sun
{"title":"MSO-DETR:用于少镜头物体检测的度量空间优化","authors":"Haifeng Sima, Manyang Wang, Lanlan Liu, Yu-dong Zhang, Junding Sun","doi":"10.1049/cit2.12342","DOIUrl":null,"url":null,"abstract":"In the metric‐based meta‐learning detection model, the distribution of training samples in the metric space has great influence on the detection performance, and this influence is usually ignored by traditional meta‐detectors. In addition, the design of metric space might be interfered with by the background noise of training samples. To tackle these issues, we propose a metric space optimisation method based on hyperbolic geometry attention and class‐agnostic activation maps. First, the geometric properties of hyperbolic spaces to establish a structured metric space are used. A variety of feature samples of different classes are embedded into the hyperbolic space with extremely low distortion. This metric space is more suitable for representing tree‐like structures between categories for image scene analysis. Meanwhile, a novel similarity measure function based on Poincaré distance is proposed to evaluate the distance of various types of objects in the feature space. In addition, the class‐agnostic activation maps (CCAMs) are employed to re‐calibrate the weight of foreground feature information and suppress background information. Finally, the decoder processes the high‐level feature information as the decoding of the query object and detects objects by predicting their locations and corresponding task encodings. Experimental evaluation is conducted on Pascal VOC and MS COCO datasets. The experiment results show that the effectiveness of the authors’ method surpasses the performance baseline of the excellent few‐shot detection models.","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSO‐DETR: Metric space optimization for few‐shot object detection\",\"authors\":\"Haifeng Sima, Manyang Wang, Lanlan Liu, Yu-dong Zhang, Junding Sun\",\"doi\":\"10.1049/cit2.12342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the metric‐based meta‐learning detection model, the distribution of training samples in the metric space has great influence on the detection performance, and this influence is usually ignored by traditional meta‐detectors. In addition, the design of metric space might be interfered with by the background noise of training samples. To tackle these issues, we propose a metric space optimisation method based on hyperbolic geometry attention and class‐agnostic activation maps. First, the geometric properties of hyperbolic spaces to establish a structured metric space are used. A variety of feature samples of different classes are embedded into the hyperbolic space with extremely low distortion. This metric space is more suitable for representing tree‐like structures between categories for image scene analysis. Meanwhile, a novel similarity measure function based on Poincaré distance is proposed to evaluate the distance of various types of objects in the feature space. In addition, the class‐agnostic activation maps (CCAMs) are employed to re‐calibrate the weight of foreground feature information and suppress background information. Finally, the decoder processes the high‐level feature information as the decoding of the query object and detects objects by predicting their locations and corresponding task encodings. Experimental evaluation is conducted on Pascal VOC and MS COCO datasets. The experiment results show that the effectiveness of the authors’ method surpasses the performance baseline of the excellent few‐shot detection models.\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1049/cit2.12342\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1049/cit2.12342","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在基于度量的元学习检测模型中,训练样本在度量空间中的分布对检测性能有很大影响,而传统的元检测器通常会忽略这种影响。此外,度量空间的设计可能会受到训练样本背景噪声的干扰。为了解决这些问题,我们提出了一种基于双曲几何注意和类区分激活图的度量空间优化方法。首先,利用双曲空间的几何特性建立结构化度量空间。不同类别的各种特征样本以极低的失真嵌入双曲空间。这种度量空间更适合在图像场景分析中表示类别之间的树状结构。同时,还提出了一种基于 Poincaré 距离的新型相似度测量函数,用于评估特征空间中各类对象的距离。此外,还采用了类别无关激活图(CCAM)来重新校准前景特征信息的权重并抑制背景信息。最后,解码器处理高级特征信息作为查询对象的解码,并通过预测其位置和相应的任务编码来检测对象。实验评估是在 Pascal VOC 和 MS COCO 数据集上进行的。实验结果表明,作者方法的有效性超过了优秀的少量检测模型的性能基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSO‐DETR: Metric space optimization for few‐shot object detection
In the metric‐based meta‐learning detection model, the distribution of training samples in the metric space has great influence on the detection performance, and this influence is usually ignored by traditional meta‐detectors. In addition, the design of metric space might be interfered with by the background noise of training samples. To tackle these issues, we propose a metric space optimisation method based on hyperbolic geometry attention and class‐agnostic activation maps. First, the geometric properties of hyperbolic spaces to establish a structured metric space are used. A variety of feature samples of different classes are embedded into the hyperbolic space with extremely low distortion. This metric space is more suitable for representing tree‐like structures between categories for image scene analysis. Meanwhile, a novel similarity measure function based on Poincaré distance is proposed to evaluate the distance of various types of objects in the feature space. In addition, the class‐agnostic activation maps (CCAMs) are employed to re‐calibrate the weight of foreground feature information and suppress background information. Finally, the decoder processes the high‐level feature information as the decoding of the query object and detects objects by predicting their locations and corresponding task encodings. Experimental evaluation is conducted on Pascal VOC and MS COCO datasets. The experiment results show that the effectiveness of the authors’ method surpasses the performance baseline of the excellent few‐shot detection models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信