{"title":"地理空间实体的潜在表征学习","authors":"Ween Jiann Lee, Hady W. Lauw","doi":"10.1145/3663474","DOIUrl":null,"url":null,"abstract":"Representation learning has been instrumental in the success of machine learning, offering compact and performant data representations for diverse downstream tasks. In the spatial domain, it has been pivotal in extracting latent patterns from various data types, including points, polylines, polygons, and networked structures. However, existing approaches often fall short of explicitly capturing both semantic and spatial information, relying on proxies and synthetic features. This paper presents GeoNN, a novel graph neural network-based model designed to learn spatially-aware embeddings for geospatial entities. GeoNN leverages edge features generated from geodesic functions, dynamically selecting relevant features based on relative locations. It introduces both transductive (GeoNN-T) and inductive (GeoNN-I) models, ensuring effective encoding of geospatial features and scalability with entity changes. Extensive experiments demonstrate GeoNN’s effectiveness in location-sensitive superpixel-based graphs and real-world points of interest, outperforming baselines across various evaluation measures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"15 12","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Representation Learning for Geospatial Entities\",\"authors\":\"Ween Jiann Lee, Hady W. Lauw\",\"doi\":\"10.1145/3663474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation learning has been instrumental in the success of machine learning, offering compact and performant data representations for diverse downstream tasks. In the spatial domain, it has been pivotal in extracting latent patterns from various data types, including points, polylines, polygons, and networked structures. However, existing approaches often fall short of explicitly capturing both semantic and spatial information, relying on proxies and synthetic features. This paper presents GeoNN, a novel graph neural network-based model designed to learn spatially-aware embeddings for geospatial entities. GeoNN leverages edge features generated from geodesic functions, dynamically selecting relevant features based on relative locations. It introduces both transductive (GeoNN-T) and inductive (GeoNN-I) models, ensuring effective encoding of geospatial features and scalability with entity changes. Extensive experiments demonstrate GeoNN’s effectiveness in location-sensitive superpixel-based graphs and real-world points of interest, outperforming baselines across various evaluation measures.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3663474\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3663474","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Latent Representation Learning for Geospatial Entities
Representation learning has been instrumental in the success of machine learning, offering compact and performant data representations for diverse downstream tasks. In the spatial domain, it has been pivotal in extracting latent patterns from various data types, including points, polylines, polygons, and networked structures. However, existing approaches often fall short of explicitly capturing both semantic and spatial information, relying on proxies and synthetic features. This paper presents GeoNN, a novel graph neural network-based model designed to learn spatially-aware embeddings for geospatial entities. GeoNN leverages edge features generated from geodesic functions, dynamically selecting relevant features based on relative locations. It introduces both transductive (GeoNN-T) and inductive (GeoNN-I) models, ensuring effective encoding of geospatial features and scalability with entity changes. Extensive experiments demonstrate GeoNN’s effectiveness in location-sensitive superpixel-based graphs and real-world points of interest, outperforming baselines across various evaluation measures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.