地理空间实体的潜在表征学习

IF 1.2 Q4 REMOTE SENSING
Ween Jiann Lee, Hady W. Lauw
{"title":"地理空间实体的潜在表征学习","authors":"Ween Jiann Lee, Hady W. Lauw","doi":"10.1145/3663474","DOIUrl":null,"url":null,"abstract":"Representation learning has been instrumental in the success of machine learning, offering compact and performant data representations for diverse downstream tasks. In the spatial domain, it has been pivotal in extracting latent patterns from various data types, including points, polylines, polygons, and networked structures. However, existing approaches often fall short of explicitly capturing both semantic and spatial information, relying on proxies and synthetic features. This paper presents GeoNN, a novel graph neural network-based model designed to learn spatially-aware embeddings for geospatial entities. GeoNN leverages edge features generated from geodesic functions, dynamically selecting relevant features based on relative locations. It introduces both transductive (GeoNN-T) and inductive (GeoNN-I) models, ensuring effective encoding of geospatial features and scalability with entity changes. Extensive experiments demonstrate GeoNN’s effectiveness in location-sensitive superpixel-based graphs and real-world points of interest, outperforming baselines across various evaluation measures.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Representation Learning for Geospatial Entities\",\"authors\":\"Ween Jiann Lee, Hady W. Lauw\",\"doi\":\"10.1145/3663474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation learning has been instrumental in the success of machine learning, offering compact and performant data representations for diverse downstream tasks. In the spatial domain, it has been pivotal in extracting latent patterns from various data types, including points, polylines, polygons, and networked structures. However, existing approaches often fall short of explicitly capturing both semantic and spatial information, relying on proxies and synthetic features. This paper presents GeoNN, a novel graph neural network-based model designed to learn spatially-aware embeddings for geospatial entities. GeoNN leverages edge features generated from geodesic functions, dynamically selecting relevant features based on relative locations. It introduces both transductive (GeoNN-T) and inductive (GeoNN-I) models, ensuring effective encoding of geospatial features and scalability with entity changes. Extensive experiments demonstrate GeoNN’s effectiveness in location-sensitive superpixel-based graphs and real-world points of interest, outperforming baselines across various evaluation measures.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3663474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3663474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

表征学习为各种下游任务提供了结构紧凑、性能良好的数据表示,对机器学习的成功起到了重要作用。在空间领域,它在从各种数据类型(包括点、折线、多边形和网络结构)中提取潜在模式方面发挥了关键作用。然而,现有的方法往往无法明确捕捉语义和空间信息,只能依赖代理和合成特征。本文介绍的 GeoNN 是一种基于图神经网络的新型模型,旨在学习地理空间实体的空间感知嵌入。GeoNN 利用大地函数生成的边缘特征,根据相对位置动态选择相关特征。它同时引入了转导(GeoNN-T)和归纳(GeoNN-I)模型,确保对地理空间特征的有效编码和实体变化时的可扩展性。大量实验证明,GeoNN 在基于位置敏感超像素的图形和现实世界兴趣点中非常有效,在各种评估指标上都优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Representation Learning for Geospatial Entities
Representation learning has been instrumental in the success of machine learning, offering compact and performant data representations for diverse downstream tasks. In the spatial domain, it has been pivotal in extracting latent patterns from various data types, including points, polylines, polygons, and networked structures. However, existing approaches often fall short of explicitly capturing both semantic and spatial information, relying on proxies and synthetic features. This paper presents GeoNN, a novel graph neural network-based model designed to learn spatially-aware embeddings for geospatial entities. GeoNN leverages edge features generated from geodesic functions, dynamically selecting relevant features based on relative locations. It introduces both transductive (GeoNN-T) and inductive (GeoNN-I) models, ensuring effective encoding of geospatial features and scalability with entity changes. Extensive experiments demonstrate GeoNN’s effectiveness in location-sensitive superpixel-based graphs and real-world points of interest, outperforming baselines across various evaluation measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信