利用三维数值模拟研究宽度比和收缩比对微通道中液滴动力学的几何影响

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-05-02 DOI:10.1002/htj.23066
Le Hung Toan Do, Thanh Tung Nguyen, Van Thanh Hoang, Minh Sang Tran
{"title":"利用三维数值模拟研究宽度比和收缩比对微通道中液滴动力学的几何影响","authors":"Le Hung Toan Do,&nbsp;Thanh Tung Nguyen,&nbsp;Van Thanh Hoang,&nbsp;Minh Sang Tran","doi":"10.1002/htj.23066","DOIUrl":null,"url":null,"abstract":"<p>Microchannel geometry is an important factor in determining droplet dynamics in droplet-based microfluidic systems, much like fluid properties and flow conditions. In this context, two important geometric parameters—the contraction ratio (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>II</mi>\n </msub>\n </mrow>\n <annotation> ${C}_{{II}}$</annotation>\n </semantics></math>) and the width ratio (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>I</mi>\n </msub>\n </mrow>\n <annotation> ${C}_{I}$</annotation>\n </semantics></math>)—that are limited to particular value ranges are taken into consideration for evaluation. These parameters interact with the capillary number (<span></span><math>\n <semantics>\n <mrow>\n <mi>Ca</mi>\n </mrow>\n <annotation> ${Ca}$</annotation>\n </semantics></math>) and viscosity ratio (<span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math>) to affect different aspects of droplet migration and manipulation, such as trap and squeeze regimes. A theoretical model is proposed, and a three-dimensional numerical simulation method is used in this work. This model predicts the change from trap to squeeze, which is caused by the interaction of the previously mentioned variables. Interestingly, an inverse correlation exists between the width ratio and the critical capillary number for this transition, which is determined as <span></span><math>\n <semantics>\n <mrow>\n <mi>Ca</mi>\n \n <mo>≥</mo>\n <mrow>\n <mrow>\n <mi>f</mi>\n \n <mo>(</mo>\n \n <mi>λ</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>II</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>/</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>I</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${Ca}\\ge f(\\lambda ,{C}_{{II}})/{C}_{I}$</annotation>\n </semantics></math>. Furthermore, the investigation explores the droplet elongation and velocity ratio during their passage through the microchannel. By matching input parameters with microchannel geometry, this information may be useful for the design of microfluidic systems, which would facilitate the careful control and manipulation of droplets.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric influence of width ratio and contraction ratio on droplet dynamics in microchannel using a 3D numerical simulation\",\"authors\":\"Le Hung Toan Do,&nbsp;Thanh Tung Nguyen,&nbsp;Van Thanh Hoang,&nbsp;Minh Sang Tran\",\"doi\":\"10.1002/htj.23066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microchannel geometry is an important factor in determining droplet dynamics in droplet-based microfluidic systems, much like fluid properties and flow conditions. In this context, two important geometric parameters—the contraction ratio (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>II</mi>\\n </msub>\\n </mrow>\\n <annotation> ${C}_{{II}}$</annotation>\\n </semantics></math>) and the width ratio (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>I</mi>\\n </msub>\\n </mrow>\\n <annotation> ${C}_{I}$</annotation>\\n </semantics></math>)—that are limited to particular value ranges are taken into consideration for evaluation. These parameters interact with the capillary number (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Ca</mi>\\n </mrow>\\n <annotation> ${Ca}$</annotation>\\n </semantics></math>) and viscosity ratio (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <annotation> $\\\\lambda $</annotation>\\n </semantics></math>) to affect different aspects of droplet migration and manipulation, such as trap and squeeze regimes. A theoretical model is proposed, and a three-dimensional numerical simulation method is used in this work. This model predicts the change from trap to squeeze, which is caused by the interaction of the previously mentioned variables. Interestingly, an inverse correlation exists between the width ratio and the critical capillary number for this transition, which is determined as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Ca</mi>\\n \\n <mo>≥</mo>\\n <mrow>\\n <mrow>\\n <mi>f</mi>\\n \\n <mo>(</mo>\\n \\n <mi>λ</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>II</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>/</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>I</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${Ca}\\\\ge f(\\\\lambda ,{C}_{{II}})/{C}_{I}$</annotation>\\n </semantics></math>. Furthermore, the investigation explores the droplet elongation and velocity ratio during their passage through the microchannel. By matching input parameters with microchannel geometry, this information may be useful for the design of microfluidic systems, which would facilitate the careful control and manipulation of droplets.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在基于液滴的微流体系统中,微通道的几何形状是决定液滴动力学的一个重要因素,就像流体特性和流动条件一样。在这种情况下,两个重要的几何参数--收缩比()和宽度比()--被限制在特定的数值范围内,需要考虑进行评估。这些参数与毛细管数()和粘度比()相互作用,影响液滴迁移和操纵的不同方面,如捕获和挤压状态。本研究提出了一个理论模型,并采用了三维数值模拟方法。该模型预测了从捕集到挤压的变化,这种变化是由前面提到的变量相互作用引起的。有趣的是,在这一转变过程中,宽度比和临界毛细管数之间存在反相关关系,临界毛细管数被确定为 。此外,研究还探讨了液滴通过微通道时的伸长率和速度比。通过将输入参数与微通道的几何形状相匹配,这些信息可能对微流体系统的设计有用,有助于对液滴进行细致的控制和操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric influence of width ratio and contraction ratio on droplet dynamics in microchannel using a 3D numerical simulation

Microchannel geometry is an important factor in determining droplet dynamics in droplet-based microfluidic systems, much like fluid properties and flow conditions. In this context, two important geometric parameters—the contraction ratio ( C II ${C}_{{II}}$ ) and the width ratio ( C I ${C}_{I}$ )—that are limited to particular value ranges are taken into consideration for evaluation. These parameters interact with the capillary number ( Ca ${Ca}$ ) and viscosity ratio ( λ $\lambda $ ) to affect different aspects of droplet migration and manipulation, such as trap and squeeze regimes. A theoretical model is proposed, and a three-dimensional numerical simulation method is used in this work. This model predicts the change from trap to squeeze, which is caused by the interaction of the previously mentioned variables. Interestingly, an inverse correlation exists between the width ratio and the critical capillary number for this transition, which is determined as Ca f ( λ , C II ) / C I ${Ca}\ge f(\lambda ,{C}_{{II}})/{C}_{I}$ . Furthermore, the investigation explores the droplet elongation and velocity ratio during their passage through the microchannel. By matching input parameters with microchannel geometry, this information may be useful for the design of microfluidic systems, which would facilitate the careful control and manipulation of droplets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信