{"title":"u-ECDM 中的气膜稳定性与性能特征问题:对现有方法的综述以及对拟议的稳定和可持续方法的初步研究","authors":"Dil Bahar, A. Dvivedi, Pradeep Kumar","doi":"10.1177/09544054241249205","DOIUrl":null,"url":null,"abstract":"Micro-featured devices (made of glass and its composites) are becoming increasingly necessary for Micro Electro-Mechanical Systems (MEMS) and healthcare devices with the emergence of technology. Due to limitations of existing methods, Micro Electro Chemical Discharge Machining (μ-ECDM) is an evolving technique for difficult to micro machine materials like glass. However, improper flushing and unstable electrolytic conditions in the processing zone percolates the efficacy, accuracy, and repeatability of μ-ECDM. Consequently, deteriorating the sustainability and industrial feasibility of this process. To cope up with these problems, various approaches like ultrasonic assistance, rotary mode, magneto hydrodynamic are integrated and investigated with μ-ECDM in the literature. Although these approaches achieved the intended objectives but do not assure the stability and sustainability of the process, which are essential for industrial feasibility in the present scenario. The present review has stressed upon the effects of existing approaches on gas film formation, discharge characteristics and performance outcomes. Systematic review methodology indicated the extensive usage of ultrasonic vibrations in μ-ECDM and, the studies on the stability/sustainability of μ-ECDM process are neglected. According to literature and preliminary investigation, problems pertaining to the rising electrolyte temperature and heterogeneous electrolyte concentration are the attributed reasons, which affects the stability as well as sustainability. Therefore, the present review proposed an innovative approach to achieve the stability and sustainability of μ-ECDM process by controlling the electrolytic conditions (termed as controlled-ECDM). A preliminary experimental investigation witnessed the enhancement of process performance and quality characteristics in controlled-ECDM.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"74 S3","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Issues of gas film stability with performance characteristics in u-ECDM: A review of existing approaches and preliminary investigation on proposed stable & sustainable approach\",\"authors\":\"Dil Bahar, A. Dvivedi, Pradeep Kumar\",\"doi\":\"10.1177/09544054241249205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-featured devices (made of glass and its composites) are becoming increasingly necessary for Micro Electro-Mechanical Systems (MEMS) and healthcare devices with the emergence of technology. Due to limitations of existing methods, Micro Electro Chemical Discharge Machining (μ-ECDM) is an evolving technique for difficult to micro machine materials like glass. However, improper flushing and unstable electrolytic conditions in the processing zone percolates the efficacy, accuracy, and repeatability of μ-ECDM. Consequently, deteriorating the sustainability and industrial feasibility of this process. To cope up with these problems, various approaches like ultrasonic assistance, rotary mode, magneto hydrodynamic are integrated and investigated with μ-ECDM in the literature. Although these approaches achieved the intended objectives but do not assure the stability and sustainability of the process, which are essential for industrial feasibility in the present scenario. The present review has stressed upon the effects of existing approaches on gas film formation, discharge characteristics and performance outcomes. Systematic review methodology indicated the extensive usage of ultrasonic vibrations in μ-ECDM and, the studies on the stability/sustainability of μ-ECDM process are neglected. According to literature and preliminary investigation, problems pertaining to the rising electrolyte temperature and heterogeneous electrolyte concentration are the attributed reasons, which affects the stability as well as sustainability. Therefore, the present review proposed an innovative approach to achieve the stability and sustainability of μ-ECDM process by controlling the electrolytic conditions (termed as controlled-ECDM). A preliminary experimental investigation witnessed the enhancement of process performance and quality characteristics in controlled-ECDM.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"74 S3\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241249205\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241249205","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Issues of gas film stability with performance characteristics in u-ECDM: A review of existing approaches and preliminary investigation on proposed stable & sustainable approach
Micro-featured devices (made of glass and its composites) are becoming increasingly necessary for Micro Electro-Mechanical Systems (MEMS) and healthcare devices with the emergence of technology. Due to limitations of existing methods, Micro Electro Chemical Discharge Machining (μ-ECDM) is an evolving technique for difficult to micro machine materials like glass. However, improper flushing and unstable electrolytic conditions in the processing zone percolates the efficacy, accuracy, and repeatability of μ-ECDM. Consequently, deteriorating the sustainability and industrial feasibility of this process. To cope up with these problems, various approaches like ultrasonic assistance, rotary mode, magneto hydrodynamic are integrated and investigated with μ-ECDM in the literature. Although these approaches achieved the intended objectives but do not assure the stability and sustainability of the process, which are essential for industrial feasibility in the present scenario. The present review has stressed upon the effects of existing approaches on gas film formation, discharge characteristics and performance outcomes. Systematic review methodology indicated the extensive usage of ultrasonic vibrations in μ-ECDM and, the studies on the stability/sustainability of μ-ECDM process are neglected. According to literature and preliminary investigation, problems pertaining to the rising electrolyte temperature and heterogeneous electrolyte concentration are the attributed reasons, which affects the stability as well as sustainability. Therefore, the present review proposed an innovative approach to achieve the stability and sustainability of μ-ECDM process by controlling the electrolytic conditions (termed as controlled-ECDM). A preliminary experimental investigation witnessed the enhancement of process performance and quality characteristics in controlled-ECDM.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.