利用哨兵-2B 图像估算泉山水库(越南河内)叶绿素-a 浓度的多元线性回归模型

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Thao Nguyen Thien Phuong, Ha Nguyen Thi Thu, Vinh Pham Quang, Hien Tran Thi, Thanh Dinh Xuan
{"title":"利用哨兵-2B 图像估算泉山水库(越南河内)叶绿素-a 浓度的多元线性回归模型","authors":"Thao Nguyen Thien Phuong, Ha Nguyen Thi Thu, Vinh Pham Quang, Hien Tran Thi, Thanh Dinh Xuan","doi":"10.15625/2615-9783/20714","DOIUrl":null,"url":null,"abstract":"Monitoring chlorophyll-a concentration (Chla) in inland waters is vital for environmental assessment. This study develops an empirical multivariate linear regression (MLR) model to directly estimate Chla in Quan Son Reservoir using Sentinel-2B (S2B) Level 2A images. Regression analysis of a 68-point in-situ Chla dataset measured in Quan Son Reservoir between 2021 and 2023, in conjunction with the corresponding S2B reflectance data, reveals a significant correlation between Chla and a combination of the blue (B2), green (B3), and red (B4) bands (coefficient of determination, R² = 0.95). The Chla estimation model is validated using a 30-point in-situ dataset collected on various dates (R² = 0.87; the root-mean-squared error RMSE < 5%). Subsequently, the model is applied to ten S2B images acquired from 2021 to 2023, revealing Chla's spatio-temporal distribution across the reservoir. Two key trends emerge: (1) Chla is lower during winter (November and December) than in summer and early autumn (July and September), and (2) The distribution of Chla undergoes noticeable spatial changes, particularly in July, with elevated levels observed in areas characterized by tourist hotspots. This approach shows promise for monitoring Chla in similar inland waters.","PeriodicalId":23639,"journal":{"name":"VIETNAM JOURNAL OF EARTH SCIENCES","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multivariate linear regression model for estimating chlorophyll-a concentration in Quan Son Reservoir (Hanoi, Vietnam) using Sentinel-2B Imagery\",\"authors\":\"Thao Nguyen Thien Phuong, Ha Nguyen Thi Thu, Vinh Pham Quang, Hien Tran Thi, Thanh Dinh Xuan\",\"doi\":\"10.15625/2615-9783/20714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring chlorophyll-a concentration (Chla) in inland waters is vital for environmental assessment. This study develops an empirical multivariate linear regression (MLR) model to directly estimate Chla in Quan Son Reservoir using Sentinel-2B (S2B) Level 2A images. Regression analysis of a 68-point in-situ Chla dataset measured in Quan Son Reservoir between 2021 and 2023, in conjunction with the corresponding S2B reflectance data, reveals a significant correlation between Chla and a combination of the blue (B2), green (B3), and red (B4) bands (coefficient of determination, R² = 0.95). The Chla estimation model is validated using a 30-point in-situ dataset collected on various dates (R² = 0.87; the root-mean-squared error RMSE < 5%). Subsequently, the model is applied to ten S2B images acquired from 2021 to 2023, revealing Chla's spatio-temporal distribution across the reservoir. Two key trends emerge: (1) Chla is lower during winter (November and December) than in summer and early autumn (July and September), and (2) The distribution of Chla undergoes noticeable spatial changes, particularly in July, with elevated levels observed in areas characterized by tourist hotspots. This approach shows promise for monitoring Chla in similar inland waters.\",\"PeriodicalId\":23639,\"journal\":{\"name\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/2615-9783/20714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIETNAM JOURNAL OF EARTH SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2615-9783/20714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

监测内陆水域的叶绿素-a 浓度(Chla)对环境评估至关重要。本研究建立了一个经验多元线性回归(MLR)模型,利用哨兵-2B(S2B)2A级图像直接估算泉山水库的叶绿素-a浓度。结合相应的 S2B 反射率数据,对 2021 年至 2023 年期间在泉山水库测量的 68 点原位 Chla 数据集进行回归分析,发现 Chla 与蓝色(B2)、绿色(B3)和红色(B4)波段组合之间存在显著相关性(判定系数 R² = 0.95)。在不同日期收集的 30 点现场数据集对 Chla 估算模型进行了验证(R² = 0.87;均方根误差 RMSE < 5%)。随后,将该模型应用于 2021 年至 2023 年采集的 10 幅 S2B 图像,揭示了 Chla 在整个水库中的时空分布。发现了两个主要趋势:(1) 冬季(11 月和 12 月)的 Chla 含量低于夏季和初秋(7 月和 9 月);(2) Chla 的分布发生了明显的空间变化,尤其是在 7 月,游客热点地区的 Chla 含量较高。这种方法显示了在类似内陆水域监测 Chla 的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multivariate linear regression model for estimating chlorophyll-a concentration in Quan Son Reservoir (Hanoi, Vietnam) using Sentinel-2B Imagery
Monitoring chlorophyll-a concentration (Chla) in inland waters is vital for environmental assessment. This study develops an empirical multivariate linear regression (MLR) model to directly estimate Chla in Quan Son Reservoir using Sentinel-2B (S2B) Level 2A images. Regression analysis of a 68-point in-situ Chla dataset measured in Quan Son Reservoir between 2021 and 2023, in conjunction with the corresponding S2B reflectance data, reveals a significant correlation between Chla and a combination of the blue (B2), green (B3), and red (B4) bands (coefficient of determination, R² = 0.95). The Chla estimation model is validated using a 30-point in-situ dataset collected on various dates (R² = 0.87; the root-mean-squared error RMSE < 5%). Subsequently, the model is applied to ten S2B images acquired from 2021 to 2023, revealing Chla's spatio-temporal distribution across the reservoir. Two key trends emerge: (1) Chla is lower during winter (November and December) than in summer and early autumn (July and September), and (2) The distribution of Chla undergoes noticeable spatial changes, particularly in July, with elevated levels observed in areas characterized by tourist hotspots. This approach shows promise for monitoring Chla in similar inland waters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
VIETNAM JOURNAL OF EARTH SCIENCES
VIETNAM JOURNAL OF EARTH SCIENCES GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
20.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信