M. A. Stephano, J. I. Irunde, Maranya M. Mayengo, Dmitry Kuznetsov
{"title":"随机 CTMC 模型比确定性模型对理解无症状携带者淋巴丝虫病动态的意义","authors":"M. A. Stephano, J. I. Irunde, Maranya M. Mayengo, Dmitry Kuznetsov","doi":"10.1155/2024/2130429","DOIUrl":null,"url":null,"abstract":"Lymphatic filariasis is a leading cause of chronic and irreversible damage to human immunity. This paper presents deterministic and continuous-time Markov chain (CTMC) stochastic models regarding lymphatic filariasis dynamics. To account for randomness and uncertainties in dynamics, the CTMC model was formulated based on deterministic model possible events. A deterministic model’s outputs suggest that disease extinction is feasible when the secondary threshold infection number is below one, while persistence becomes likely when the opposite holds true. Furthermore, the significant contribution of asymptomatic carriers was identified. Results indicate that persistence is more likely to occur when the infection results from asymptomatic, acutely infected, or infectious mosquitoes. Consequently, the CTMC stochastic model is essential in capturing variabilities, randomness, associated probabilities, and validity across different scales, whereas oversimplification and unpredictability of inherent may not be featured in a deterministic model.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Significance of Stochastic CTMC Over Deterministic Model in Understanding the Dynamics of Lymphatic Filariasis With Asymptomatic Carriers\",\"authors\":\"M. A. Stephano, J. I. Irunde, Maranya M. Mayengo, Dmitry Kuznetsov\",\"doi\":\"10.1155/2024/2130429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lymphatic filariasis is a leading cause of chronic and irreversible damage to human immunity. This paper presents deterministic and continuous-time Markov chain (CTMC) stochastic models regarding lymphatic filariasis dynamics. To account for randomness and uncertainties in dynamics, the CTMC model was formulated based on deterministic model possible events. A deterministic model’s outputs suggest that disease extinction is feasible when the secondary threshold infection number is below one, while persistence becomes likely when the opposite holds true. Furthermore, the significant contribution of asymptomatic carriers was identified. Results indicate that persistence is more likely to occur when the infection results from asymptomatic, acutely infected, or infectious mosquitoes. Consequently, the CTMC stochastic model is essential in capturing variabilities, randomness, associated probabilities, and validity across different scales, whereas oversimplification and unpredictability of inherent may not be featured in a deterministic model.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2130429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/2130429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Significance of Stochastic CTMC Over Deterministic Model in Understanding the Dynamics of Lymphatic Filariasis With Asymptomatic Carriers
Lymphatic filariasis is a leading cause of chronic and irreversible damage to human immunity. This paper presents deterministic and continuous-time Markov chain (CTMC) stochastic models regarding lymphatic filariasis dynamics. To account for randomness and uncertainties in dynamics, the CTMC model was formulated based on deterministic model possible events. A deterministic model’s outputs suggest that disease extinction is feasible when the secondary threshold infection number is below one, while persistence becomes likely when the opposite holds true. Furthermore, the significant contribution of asymptomatic carriers was identified. Results indicate that persistence is more likely to occur when the infection results from asymptomatic, acutely infected, or infectious mosquitoes. Consequently, the CTMC stochastic model is essential in capturing variabilities, randomness, associated probabilities, and validity across different scales, whereas oversimplification and unpredictability of inherent may not be featured in a deterministic model.
期刊介绍:
Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.