AI-QCT、CT-FFR 和医生肉眼判读在每血管异常有创腺苷 FFR 预测中的应用

Andrew Chiou, M. Hermel, Rajbir Sidhu, Eric Hu, Alexander van Rosendael, Samantha Bagsic, E. Udoh, Ricardo Kosturakis, Mohammad Aziz, Christina Rodriguez Ruiz, Shawn Newlander, Bahram Khadivi, Jason Parker Brown, M. L. Charlat, P. Teirstein, C. Stinis, Richard Schatz, Matthew J. Price, Jeffrey Cavendish, Michael Salerno, Austin Robinson, Sanjeev P Bhavnani, Jorge Gonzalez, G. Wesbey
{"title":"AI-QCT、CT-FFR 和医生肉眼判读在每血管异常有创腺苷 FFR 预测中的应用","authors":"Andrew Chiou, M. Hermel, Rajbir Sidhu, Eric Hu, Alexander van Rosendael, Samantha Bagsic, E. Udoh, Ricardo Kosturakis, Mohammad Aziz, Christina Rodriguez Ruiz, Shawn Newlander, Bahram Khadivi, Jason Parker Brown, M. L. Charlat, P. Teirstein, C. Stinis, Richard Schatz, Matthew J. Price, Jeffrey Cavendish, Michael Salerno, Austin Robinson, Sanjeev P Bhavnani, Jorge Gonzalez, G. Wesbey","doi":"10.1093/ehjimp/qyae035","DOIUrl":null,"url":null,"abstract":"\n \n \n A comparison of diagnostic performance comparing AI-QCTISCHEMIA, CT-FFR, and physician visual interpretation on the prediction of invasive adenosine FFR have not been evaluated. Furthermore, the coronary plaque characteristics impacting these tests have not been assessed.\n \n \n \n In a single center, 43-month retrospective review of 442 patients referred for CCTA and CT-FFR, 44 patients with CT-FFR had 54 vessels assessed using intracoronary adenosine FFR within 60 days. A comparison of the diagnostic performance among these three techniques for the prediction of FFR ≤ 0.80 was reported.\n \n \n \n The mean age of the study population was 65 years, 76.9% were male, and the median CAC was 623. When analyzing the per vessel ischemia prediction, AI-QCTISCHEMIA had greater specificity, PPV, diagnostic accuracy, and AUC vs. CT- FFR and physician visual interpretation CAD-RADS. The AUC for AI-QCTISCHEMIA was 0.91 vs. 0.76 for CT-FFR and 0.62 for CADRADS ≥3. Plaque characteristics that were different in false positive vs true positive cases for AI-QCTISCHEMIA was max stenosis diameter (50 vs 70%, p = 0.03); for CT-FFR were maximum stenosis diameter (40 vs 70%, p < 0.001), total noncalcified plaque (9 vs 13%, p = 0.02); and for physician visual interpretation CADRADS ≥3 were total noncalcified plaque (8 vs 12%, p = 0.01), lumen volume (681 vs 510mm3, p = 0.03), maximum stenosis diameter (40 vs 60%, p < 0.001), total plaque (19 vs 33%, p = 0.006, total calcified plaque (11 vs 22%, p = 0.008).\n \n \n \n Regarding per-vessel prediction of FFR ≤ 0.8, AI-QCTISCHEMIA revealed greater specificity, PPV, accuracy, and AUC vs. CT-FFR and physician visual interpretation CADRADS ≥3.\n","PeriodicalId":508944,"journal":{"name":"European Heart Journal - Imaging Methods and Practice","volume":"22 S8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-QCT, CT-FFR, and physician visual interpretation in the per-vessel prediction of abnormal invasive adenosine FFR\",\"authors\":\"Andrew Chiou, M. Hermel, Rajbir Sidhu, Eric Hu, Alexander van Rosendael, Samantha Bagsic, E. Udoh, Ricardo Kosturakis, Mohammad Aziz, Christina Rodriguez Ruiz, Shawn Newlander, Bahram Khadivi, Jason Parker Brown, M. L. Charlat, P. Teirstein, C. Stinis, Richard Schatz, Matthew J. Price, Jeffrey Cavendish, Michael Salerno, Austin Robinson, Sanjeev P Bhavnani, Jorge Gonzalez, G. Wesbey\",\"doi\":\"10.1093/ehjimp/qyae035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n A comparison of diagnostic performance comparing AI-QCTISCHEMIA, CT-FFR, and physician visual interpretation on the prediction of invasive adenosine FFR have not been evaluated. Furthermore, the coronary plaque characteristics impacting these tests have not been assessed.\\n \\n \\n \\n In a single center, 43-month retrospective review of 442 patients referred for CCTA and CT-FFR, 44 patients with CT-FFR had 54 vessels assessed using intracoronary adenosine FFR within 60 days. A comparison of the diagnostic performance among these three techniques for the prediction of FFR ≤ 0.80 was reported.\\n \\n \\n \\n The mean age of the study population was 65 years, 76.9% were male, and the median CAC was 623. When analyzing the per vessel ischemia prediction, AI-QCTISCHEMIA had greater specificity, PPV, diagnostic accuracy, and AUC vs. CT- FFR and physician visual interpretation CAD-RADS. The AUC for AI-QCTISCHEMIA was 0.91 vs. 0.76 for CT-FFR and 0.62 for CADRADS ≥3. Plaque characteristics that were different in false positive vs true positive cases for AI-QCTISCHEMIA was max stenosis diameter (50 vs 70%, p = 0.03); for CT-FFR were maximum stenosis diameter (40 vs 70%, p < 0.001), total noncalcified plaque (9 vs 13%, p = 0.02); and for physician visual interpretation CADRADS ≥3 were total noncalcified plaque (8 vs 12%, p = 0.01), lumen volume (681 vs 510mm3, p = 0.03), maximum stenosis diameter (40 vs 60%, p < 0.001), total plaque (19 vs 33%, p = 0.006, total calcified plaque (11 vs 22%, p = 0.008).\\n \\n \\n \\n Regarding per-vessel prediction of FFR ≤ 0.8, AI-QCTISCHEMIA revealed greater specificity, PPV, accuracy, and AUC vs. CT-FFR and physician visual interpretation CADRADS ≥3.\\n\",\"PeriodicalId\":508944,\"journal\":{\"name\":\"European Heart Journal - Imaging Methods and Practice\",\"volume\":\"22 S8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Heart Journal - Imaging Methods and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjimp/qyae035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Imaging Methods and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyae035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前尚未对 AI-QCTISCHEMIA、CT-FFR 和医生目测预测有创腺苷 FFR 的诊断性能进行比较评估。此外,影响这些检测的冠状动脉斑块特征也未得到评估。 在一项对 442 名转诊接受 CCTA 和 CT-FFR 的患者进行的为期 43 个月的单中心回顾性研究中,44 名 CT-FFR 患者在 60 天内使用冠状动脉内腺苷 FFR 对 54 条血管进行了评估。报告对这三种技术预测 FFR ≤ 0.80 的诊断性能进行了比较。 研究对象的平均年龄为 65 岁,76.9% 为男性,CAC 中位数为 623。在分析每条血管缺血预测时,AI-QCTISCHEMIA 的特异性、PPV、诊断准确性和 AUC 均高于 CT- FFR 和医生目测判读 CAD-RADS。AI-QCTISCHEMIA 的 AUC 为 0.91,CT-FFR 为 0.76,CADRADS ≥3 为 0.62。AI-QCTISCHEMIA假阳性与真阳性病例的斑块特征不同,最大狭窄直径(50 vs 70%,P = 0.03);CT-FFR的最大狭窄直径(40 vs 70%,P < 0.001)、非钙化斑块总数(9 vs 13%,P = 0.02);CADRADS≥3的医生肉眼判读结果为:非钙化斑块总数(8 vs 12%,p = 0.01)、管腔容积(681 vs 510mm3,p = 0.03)、最大狭窄直径(40 vs 60%,p < 0.001)、斑块总数(19 vs 33%,p = 0.006)、钙化斑块总数(11 vs 22%,p = 0.008)。 关于 FFR ≤ 0.8 的每血管预测,AI-QCTISCHEMIA 与 CT-FFR 和 CADRADS ≥3 的医生肉眼判读相比,具有更高的特异性、PPV、准确性和 AUC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-QCT, CT-FFR, and physician visual interpretation in the per-vessel prediction of abnormal invasive adenosine FFR
A comparison of diagnostic performance comparing AI-QCTISCHEMIA, CT-FFR, and physician visual interpretation on the prediction of invasive adenosine FFR have not been evaluated. Furthermore, the coronary plaque characteristics impacting these tests have not been assessed. In a single center, 43-month retrospective review of 442 patients referred for CCTA and CT-FFR, 44 patients with CT-FFR had 54 vessels assessed using intracoronary adenosine FFR within 60 days. A comparison of the diagnostic performance among these three techniques for the prediction of FFR ≤ 0.80 was reported. The mean age of the study population was 65 years, 76.9% were male, and the median CAC was 623. When analyzing the per vessel ischemia prediction, AI-QCTISCHEMIA had greater specificity, PPV, diagnostic accuracy, and AUC vs. CT- FFR and physician visual interpretation CAD-RADS. The AUC for AI-QCTISCHEMIA was 0.91 vs. 0.76 for CT-FFR and 0.62 for CADRADS ≥3. Plaque characteristics that were different in false positive vs true positive cases for AI-QCTISCHEMIA was max stenosis diameter (50 vs 70%, p = 0.03); for CT-FFR were maximum stenosis diameter (40 vs 70%, p < 0.001), total noncalcified plaque (9 vs 13%, p = 0.02); and for physician visual interpretation CADRADS ≥3 were total noncalcified plaque (8 vs 12%, p = 0.01), lumen volume (681 vs 510mm3, p = 0.03), maximum stenosis diameter (40 vs 60%, p < 0.001), total plaque (19 vs 33%, p = 0.006, total calcified plaque (11 vs 22%, p = 0.008). Regarding per-vessel prediction of FFR ≤ 0.8, AI-QCTISCHEMIA revealed greater specificity, PPV, accuracy, and AUC vs. CT-FFR and physician visual interpretation CADRADS ≥3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信