Wong Kar Hao, Mohd Afzanizam Mohd Rosli, Jayaprakash Ponnaiyan, Safarudin Ghazali Herawan, Faridah Hussain
{"title":"农产品混合太阳能干燥箱的模拟研究","authors":"Wong Kar Hao, Mohd Afzanizam Mohd Rosli, Jayaprakash Ponnaiyan, Safarudin Ghazali Herawan, Faridah Hussain","doi":"10.37934/cfdl.16.9.8193","DOIUrl":null,"url":null,"abstract":"Hybrid solar drying chamber is an application that is widely used today for agriculture products because it can promise the hygiene of the product. However, drying chambers nowadays still lack uniformity in drying products within a drying chamber, leading to food wastage and compromised product quality. This study aims to design an innovative hybrid solar drying chamber system and investigate the uniformity of temperature and velocity within the chamber using Computational Fluid Dynamics (CFD). The methodology involves validating the simulation results by comparing them with existing journal data, with a validation error of less than 5%. A new design is proposed after the validation process, considering factors such as tray arrangement and air inlet size. The results show that a tray arrangement with 0.20 m spacing between each tray provides better uniformity in temperature and air velocity distribution compared to other arrangements. Additionally, an inlet size of 0.05 m2 demonstrates the most suitable temperature distribution for drying purposes, falling within the ideal range of 318 K to 343 K. The study showed that the performance of the drying chamber under different operating conditions has consistent temperature distribution and is suitable for uniform drying. Overall, the proposed hybrid solar drying chamber system offers improved temperature control and uniformity for effective drying process.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"54 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simulation Study of Hybrid Solar Drying Chamber for Agriculture Product\",\"authors\":\"Wong Kar Hao, Mohd Afzanizam Mohd Rosli, Jayaprakash Ponnaiyan, Safarudin Ghazali Herawan, Faridah Hussain\",\"doi\":\"10.37934/cfdl.16.9.8193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid solar drying chamber is an application that is widely used today for agriculture products because it can promise the hygiene of the product. However, drying chambers nowadays still lack uniformity in drying products within a drying chamber, leading to food wastage and compromised product quality. This study aims to design an innovative hybrid solar drying chamber system and investigate the uniformity of temperature and velocity within the chamber using Computational Fluid Dynamics (CFD). The methodology involves validating the simulation results by comparing them with existing journal data, with a validation error of less than 5%. A new design is proposed after the validation process, considering factors such as tray arrangement and air inlet size. The results show that a tray arrangement with 0.20 m spacing between each tray provides better uniformity in temperature and air velocity distribution compared to other arrangements. Additionally, an inlet size of 0.05 m2 demonstrates the most suitable temperature distribution for drying purposes, falling within the ideal range of 318 K to 343 K. The study showed that the performance of the drying chamber under different operating conditions has consistent temperature distribution and is suitable for uniform drying. Overall, the proposed hybrid solar drying chamber system offers improved temperature control and uniformity for effective drying process.\",\"PeriodicalId\":9736,\"journal\":{\"name\":\"CFD Letters\",\"volume\":\"54 51\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CFD Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/cfdl.16.9.8193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.9.8193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
混合式太阳能干燥箱是当今广泛用于农产品的一种应用,因为它可以保证产品的卫生。然而,如今的烘干箱在烘干箱内烘干产品时仍然缺乏均匀性,导致食品浪费和产品质量下降。本研究旨在设计一种创新型混合太阳能干燥箱系统,并利用计算流体动力学(CFD)研究箱内温度和速度的均匀性。研究方法包括将模拟结果与现有的期刊数据进行对比验证,验证误差小于 5%。在验证过程后,考虑到托盘布置和进气口尺寸等因素,提出了新的设计方案。结果表明,与其他布置方式相比,每个托盘间距为 0.20 米的托盘布置方式能更好地实现温度和气流速度分布的均匀性。此外,0.05 平方米的进气口尺寸显示出最适合干燥目的的温度分布,在 318 K 至 343 K 的理想范围内。研究表明,干燥室在不同操作条件下的性能具有一致的温度分布,适合均匀干燥。总之,拟议的混合太阳能干燥箱系统可改善温度控制和均匀性,从而实现有效的干燥过程。
A Simulation Study of Hybrid Solar Drying Chamber for Agriculture Product
Hybrid solar drying chamber is an application that is widely used today for agriculture products because it can promise the hygiene of the product. However, drying chambers nowadays still lack uniformity in drying products within a drying chamber, leading to food wastage and compromised product quality. This study aims to design an innovative hybrid solar drying chamber system and investigate the uniformity of temperature and velocity within the chamber using Computational Fluid Dynamics (CFD). The methodology involves validating the simulation results by comparing them with existing journal data, with a validation error of less than 5%. A new design is proposed after the validation process, considering factors such as tray arrangement and air inlet size. The results show that a tray arrangement with 0.20 m spacing between each tray provides better uniformity in temperature and air velocity distribution compared to other arrangements. Additionally, an inlet size of 0.05 m2 demonstrates the most suitable temperature distribution for drying purposes, falling within the ideal range of 318 K to 343 K. The study showed that the performance of the drying chamber under different operating conditions has consistent temperature distribution and is suitable for uniform drying. Overall, the proposed hybrid solar drying chamber system offers improved temperature control and uniformity for effective drying process.