利用细胞自动机/马尔可夫链多标准分析和马尔可夫-马尔可夫转换估计器建立斯里兰卡库鲁内加拉城市增长模型

Farasath Hasan
{"title":"利用细胞自动机/马尔可夫链多标准分析和马尔可夫-马尔可夫转换估计器建立斯里兰卡库鲁内加拉城市增长模型","authors":"Farasath Hasan","doi":"10.33140/eesrr.07.02.04","DOIUrl":null,"url":null,"abstract":"With accelerated global urbanization, the expansion of cities has become a pressing concern for urban planners and researchers. The growth and dynamics of urban encroachment are closely tied to changes in land use, especially in urbanized areas. This study seeks to evaluate the accuracy of the CA-Markov (Cellular Automata) model in predicting land use/land cover changes (LULCC) in the Kurunegala district, Sri Lanka as a result of urban expansion. The investigation employs secondary data, including 2007, 2012, 2017, and 2022 Landsat 05, 07, 08, and 09 images respectively. Using software applications such as ArcGIS 10.8, IDRISI 17.0, and MS-Excel 2019, diverse techniques including supervised classification, Markovian transition estimation, and CAMarkov chain analysis, this study attempts to analyze the Urban Growth Modeling for 2027 and 2037 using CA-Markov Chain Multi-criteria Analysis (MCA) under Markov-Markovian Transition Estimator. The study used 32 spatial variables for determining the LULCC. As per the derived results, from 2022 to 2027, urban areas have increased quite markedly. The vegetation cover area has reduced and the areas of water bodies have increased spatially. From 2027 to 2037, the urban area increment is 72.552%. Also, vegetation cover and water body distribution have reduced by 8.051% and 39.91% respectively.","PeriodicalId":298809,"journal":{"name":"Earth & Environmental Science Research & Reviews","volume":"11 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban Growth Modeling in Kurunegala, Sri Lanka using Cellular Automata/Markov Chain Multi-criteria Analysis and Markov-Markovian Transition Estimator\",\"authors\":\"Farasath Hasan\",\"doi\":\"10.33140/eesrr.07.02.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With accelerated global urbanization, the expansion of cities has become a pressing concern for urban planners and researchers. The growth and dynamics of urban encroachment are closely tied to changes in land use, especially in urbanized areas. This study seeks to evaluate the accuracy of the CA-Markov (Cellular Automata) model in predicting land use/land cover changes (LULCC) in the Kurunegala district, Sri Lanka as a result of urban expansion. The investigation employs secondary data, including 2007, 2012, 2017, and 2022 Landsat 05, 07, 08, and 09 images respectively. Using software applications such as ArcGIS 10.8, IDRISI 17.0, and MS-Excel 2019, diverse techniques including supervised classification, Markovian transition estimation, and CAMarkov chain analysis, this study attempts to analyze the Urban Growth Modeling for 2027 and 2037 using CA-Markov Chain Multi-criteria Analysis (MCA) under Markov-Markovian Transition Estimator. The study used 32 spatial variables for determining the LULCC. As per the derived results, from 2022 to 2027, urban areas have increased quite markedly. The vegetation cover area has reduced and the areas of water bodies have increased spatially. From 2027 to 2037, the urban area increment is 72.552%. Also, vegetation cover and water body distribution have reduced by 8.051% and 39.91% respectively.\",\"PeriodicalId\":298809,\"journal\":{\"name\":\"Earth & Environmental Science Research & Reviews\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth & Environmental Science Research & Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/eesrr.07.02.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth & Environmental Science Research & Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/eesrr.07.02.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着全球城市化进程的加快,城市扩张已成为城市规划者和研究人员迫切关注的问题。城市侵蚀的增长和动态与土地利用的变化密切相关,尤其是在城市化地区。本研究旨在评估 CA-马尔科夫(蜂窝自动机)模型在预测斯里兰卡库鲁内加拉地区因城市扩张而导致的土地利用/土地覆被变化(LULCC)方面的准确性。调查采用了二手数据,分别包括 2007 年、2012 年、2017 年和 2022 年的 Landsat 05、07、08 和 09 图像。本研究使用 ArcGIS 10.8、IDRISI 17.0 和 MS-Excel 2019 等软件应用程序,以及监督分类、马尔可夫转换估计和 CAMarkov 链分析等多种技术,尝试在马尔可夫-马尔可夫转换估计器下使用 CA-Markov 链多标准分析(MCA)分析 2027 年和 2037 年的城市增长模型。研究使用了 32 个空间变量来确定 LULCC。根据得出的结果,从 2022 年到 2027 年,城市面积明显增加。植被覆盖面积减少,水体面积增加。从 2027 年到 2037 年,城市面积增加了 72.552%。同时,植被覆盖面积和水体分布面积分别减少了 8.051%和 39.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban Growth Modeling in Kurunegala, Sri Lanka using Cellular Automata/Markov Chain Multi-criteria Analysis and Markov-Markovian Transition Estimator
With accelerated global urbanization, the expansion of cities has become a pressing concern for urban planners and researchers. The growth and dynamics of urban encroachment are closely tied to changes in land use, especially in urbanized areas. This study seeks to evaluate the accuracy of the CA-Markov (Cellular Automata) model in predicting land use/land cover changes (LULCC) in the Kurunegala district, Sri Lanka as a result of urban expansion. The investigation employs secondary data, including 2007, 2012, 2017, and 2022 Landsat 05, 07, 08, and 09 images respectively. Using software applications such as ArcGIS 10.8, IDRISI 17.0, and MS-Excel 2019, diverse techniques including supervised classification, Markovian transition estimation, and CAMarkov chain analysis, this study attempts to analyze the Urban Growth Modeling for 2027 and 2037 using CA-Markov Chain Multi-criteria Analysis (MCA) under Markov-Markovian Transition Estimator. The study used 32 spatial variables for determining the LULCC. As per the derived results, from 2022 to 2027, urban areas have increased quite markedly. The vegetation cover area has reduced and the areas of water bodies have increased spatially. From 2027 to 2037, the urban area increment is 72.552%. Also, vegetation cover and water body distribution have reduced by 8.051% and 39.91% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信