年龄组爵士模型的分析特性和数值保存:应用于信息扩散

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
A. Cardone, Patricia Diaz de Alba, B. Paternoster
{"title":"年龄组爵士模型的分析特性和数值保存:应用于信息扩散","authors":"A. Cardone, Patricia Diaz de Alba, B. Paternoster","doi":"10.1115/1.4065437","DOIUrl":null,"url":null,"abstract":"\n This paper analyzes an age-group SIR (Susceptible-Infected-Recovered) model. Theoretical results concerning the conservation of the total population, the positivity of the analytical solution, and the final size of the epidemic are derived. Since the model is a nonlinear system of ordinary differential equations, a numerical approximation is considered, based on Standard and non Standard Finite Difference methods, and on the Modified Patankar Euler method. The numerical preservation of the qualitative properties of the analytical solution is studied. The obtained results are applied to the diffusion of information in social networks. The effectiveness of the different numerical approaches is shown through several numerical tests on real data.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Properties and Numerical Preservation of an Age-Group Sir Model: Application to the Diffusion of Information\",\"authors\":\"A. Cardone, Patricia Diaz de Alba, B. Paternoster\",\"doi\":\"10.1115/1.4065437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper analyzes an age-group SIR (Susceptible-Infected-Recovered) model. Theoretical results concerning the conservation of the total population, the positivity of the analytical solution, and the final size of the epidemic are derived. Since the model is a nonlinear system of ordinary differential equations, a numerical approximation is considered, based on Standard and non Standard Finite Difference methods, and on the Modified Patankar Euler method. The numerical preservation of the qualitative properties of the analytical solution is studied. The obtained results are applied to the diffusion of information in social networks. The effectiveness of the different numerical approaches is shown through several numerical tests on real data.\",\"PeriodicalId\":54858,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065437\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065437","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了一个年龄组 SIR(易感者-感染者-康复者)模型。得出了有关总人口守恒性、解析解的正相关性和流行病最终规模的理论结果。由于该模型是一个非线性常微分方程系统,因此考虑了基于标准和非标准有限差分法以及修正帕坦卡欧拉法的数值近似。研究了在数值上如何保持解析解的定性特性。所得结果被应用于社交网络中的信息扩散。通过对真实数据进行多次数值测试,证明了不同数值方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Properties and Numerical Preservation of an Age-Group Sir Model: Application to the Diffusion of Information
This paper analyzes an age-group SIR (Susceptible-Infected-Recovered) model. Theoretical results concerning the conservation of the total population, the positivity of the analytical solution, and the final size of the epidemic are derived. Since the model is a nonlinear system of ordinary differential equations, a numerical approximation is considered, based on Standard and non Standard Finite Difference methods, and on the Modified Patankar Euler method. The numerical preservation of the qualitative properties of the analytical solution is studied. The obtained results are applied to the diffusion of information in social networks. The effectiveness of the different numerical approaches is shown through several numerical tests on real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
10.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信