{"title":"富中子 P、Cl 和 K 同位素的原子价空间内相似重正化组计算","authors":"Mengran Xie, Liuyuan Shen, Jianguo Li, Honghui Li, Qi Yuan, Wei 左维 Zuo","doi":"10.1088/1674-1137/ad47aa","DOIUrl":null,"url":null,"abstract":"\n Neutron-rich P, Cl, and K isotopes, particularly those with neutron numbers around $N=28$, have attracted extensive experimental and theoretical interest. We utilize the \\textit{ab initio} valence-space in-medium similarity renormalization group approach, based on chiral nucleon-nucleon and three-nucleon forces, to investigate the exotic properties of these isotopes. Systematic calculations of the low-lying spectra are performed. A key finding is the level inversion between $3/2_1^+$ and $1/2_1^+$ states in odd-$A$ isotopes, attributed to the inversion of $\\pi 0d_{3/2}$ and $\\pi 1s_{1/2}$ single-particle states. \\textit{Ab initio} calculations, which incorporate the three-nucleon forces, correlate closely with existing experimental data. Further calculations of effective proton single-particle energies provide deeper insights into the shell evolution for $Z=14$ and $16$ sub-shells. Our results indicate that the three-body force plays important roles in the shell evolution for $Z=14$ and $16$ sub-shells with neutron numbers ranging from 20 to 28. Additionally, systematic \\textit{ab initio} calculations are conducted for the low-lying spectra of odd-odd nuclei. The results align with experimental data and provide new insights for future research into these isotopes, up to and beyond the drip line.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"43 S1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio valence-space in-medium similarity renormalization group calculations for neutron-rich P, Cl, and K isotopes\",\"authors\":\"Mengran Xie, Liuyuan Shen, Jianguo Li, Honghui Li, Qi Yuan, Wei 左维 Zuo\",\"doi\":\"10.1088/1674-1137/ad47aa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Neutron-rich P, Cl, and K isotopes, particularly those with neutron numbers around $N=28$, have attracted extensive experimental and theoretical interest. We utilize the \\\\textit{ab initio} valence-space in-medium similarity renormalization group approach, based on chiral nucleon-nucleon and three-nucleon forces, to investigate the exotic properties of these isotopes. Systematic calculations of the low-lying spectra are performed. A key finding is the level inversion between $3/2_1^+$ and $1/2_1^+$ states in odd-$A$ isotopes, attributed to the inversion of $\\\\pi 0d_{3/2}$ and $\\\\pi 1s_{1/2}$ single-particle states. \\\\textit{Ab initio} calculations, which incorporate the three-nucleon forces, correlate closely with existing experimental data. Further calculations of effective proton single-particle energies provide deeper insights into the shell evolution for $Z=14$ and $16$ sub-shells. Our results indicate that the three-body force plays important roles in the shell evolution for $Z=14$ and $16$ sub-shells with neutron numbers ranging from 20 to 28. Additionally, systematic \\\\textit{ab initio} calculations are conducted for the low-lying spectra of odd-odd nuclei. The results align with experimental data and provide new insights for future research into these isotopes, up to and beyond the drip line.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"43 S1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1137/ad47aa\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad47aa","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ab initio valence-space in-medium similarity renormalization group calculations for neutron-rich P, Cl, and K isotopes
Neutron-rich P, Cl, and K isotopes, particularly those with neutron numbers around $N=28$, have attracted extensive experimental and theoretical interest. We utilize the \textit{ab initio} valence-space in-medium similarity renormalization group approach, based on chiral nucleon-nucleon and three-nucleon forces, to investigate the exotic properties of these isotopes. Systematic calculations of the low-lying spectra are performed. A key finding is the level inversion between $3/2_1^+$ and $1/2_1^+$ states in odd-$A$ isotopes, attributed to the inversion of $\pi 0d_{3/2}$ and $\pi 1s_{1/2}$ single-particle states. \textit{Ab initio} calculations, which incorporate the three-nucleon forces, correlate closely with existing experimental data. Further calculations of effective proton single-particle energies provide deeper insights into the shell evolution for $Z=14$ and $16$ sub-shells. Our results indicate that the three-body force plays important roles in the shell evolution for $Z=14$ and $16$ sub-shells with neutron numbers ranging from 20 to 28. Additionally, systematic \textit{ab initio} calculations are conducted for the low-lying spectra of odd-odd nuclei. The results align with experimental data and provide new insights for future research into these isotopes, up to and beyond the drip line.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico