原始巨噬细胞通过渗出途径诱导发育中的人类心脏微组织的肉瘤成熟和功能增强

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Homaira Hamidzada, Simon Pascual-Gil, Qinghua Wu, Gregory M. Kent, Stéphane Massé, Crystal Kantores, Uros Kuzmanov, M. Juliana Gomez-Garcia, Naimeh Rafatian, Renée A. Gorman, Marianne Wauchop, Wenliang Chen, Shira Landau, Tasnia Subha, Michael H. Atkins, Yimu Zhao, Erika Beroncal, Ian Fernandes, Jared Nanthakumar, Shabana Vohra, Erika Y. Wang, Tamilla Valdman Sadikov, Babak Razani, Tracy L. McGaha, Ana C. Andreazza, Anthony Gramolini, Peter H. Backx, Kumaraswamy Nanthakumar, Michael A. Laflamme, Gordon Keller, Milica Radisic, Slava Epelman
{"title":"原始巨噬细胞通过渗出途径诱导发育中的人类心脏微组织的肉瘤成熟和功能增强","authors":"Homaira Hamidzada, Simon Pascual-Gil, Qinghua Wu, Gregory M. Kent, Stéphane Massé, Crystal Kantores, Uros Kuzmanov, M. Juliana Gomez-Garcia, Naimeh Rafatian, Renée A. Gorman, Marianne Wauchop, Wenliang Chen, Shira Landau, Tasnia Subha, Michael H. Atkins, Yimu Zhao, Erika Beroncal, Ian Fernandes, Jared Nanthakumar, Shabana Vohra, Erika Y. Wang, Tamilla Valdman Sadikov, Babak Razani, Tracy L. McGaha, Ana C. Andreazza, Anthony Gramolini, Peter H. Backx, Kumaraswamy Nanthakumar, Michael A. Laflamme, Gordon Keller, Milica Radisic, Slava Epelman","doi":"10.1038/s44161-024-00471-7","DOIUrl":null,"url":null,"abstract":"Yolk sac macrophages are the first to seed the developing heart; however, owing to a lack of accessible tissue, there is no understanding of their roles in human heart development and function. In this study, we bridge this gap by differentiating human embryonic stem (hES) cells into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine-dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function. Hamidzada et al. show that human pluripotent stem cell–derived macrophages are educated into a tissue-resident fate within human cardiac microtissues, enhancing its function via efferocytic ingestion of stressed cardiomyocyte cargo.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 5","pages":"567-593"},"PeriodicalIF":9.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primitive macrophages induce sarcomeric maturation and functional enhancement of developing human cardiac microtissues via efferocytic pathways\",\"authors\":\"Homaira Hamidzada, Simon Pascual-Gil, Qinghua Wu, Gregory M. Kent, Stéphane Massé, Crystal Kantores, Uros Kuzmanov, M. Juliana Gomez-Garcia, Naimeh Rafatian, Renée A. Gorman, Marianne Wauchop, Wenliang Chen, Shira Landau, Tasnia Subha, Michael H. Atkins, Yimu Zhao, Erika Beroncal, Ian Fernandes, Jared Nanthakumar, Shabana Vohra, Erika Y. Wang, Tamilla Valdman Sadikov, Babak Razani, Tracy L. McGaha, Ana C. Andreazza, Anthony Gramolini, Peter H. Backx, Kumaraswamy Nanthakumar, Michael A. Laflamme, Gordon Keller, Milica Radisic, Slava Epelman\",\"doi\":\"10.1038/s44161-024-00471-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yolk sac macrophages are the first to seed the developing heart; however, owing to a lack of accessible tissue, there is no understanding of their roles in human heart development and function. In this study, we bridge this gap by differentiating human embryonic stem (hES) cells into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine-dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function. Hamidzada et al. show that human pluripotent stem cell–derived macrophages are educated into a tissue-resident fate within human cardiac microtissues, enhancing its function via efferocytic ingestion of stressed cardiomyocyte cargo.\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\"3 5\",\"pages\":\"567-593\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44161-024-00471-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-024-00471-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

卵黄囊巨噬细胞是发育中心脏的第一批种子;然而,由于缺乏可获取的组织,人们对它们在人类心脏发育和功能中的作用尚不了解。在这项研究中,我们将人类胚胎干细胞(hES)分化成原始LYVE1+巨噬细胞(hESC-巨噬细胞),并将其稳定地接种到由hESC-心肌细胞和成纤维细胞组成的收缩性心脏微组织中,从而弥补了这一空白。移植诱导了一种富含流出细胞途径的人类胎儿心脏巨噬细胞基因程序。在功能上,hESC-巨噬细胞可触发心肌细胞肉瘤蛋白成熟、增强收缩力并改善松弛动力学。从机理上讲,hESC-巨噬细胞依赖磷脂酰丝氨酸摄取凋亡的心肌细胞货物,从而降低微组织应力,使 hESC-心肌细胞在转录和代谢方面更接近早期胎儿心室心肌细胞。抑制 hESC-巨噬细胞的流出会影响肉瘤蛋白的成熟并降低心脏微组织的功能。总之,巨噬细胞工程人类心脏微组织代表了一种大大改进的人类心脏发育模型,并揭示了人类原始巨噬细胞在增强早期心脏组织功能方面的主要有益作用。Hamidzada等人的研究表明,人类多能干细胞衍生的巨噬细胞在人类心脏微组织中被教育成一种组织驻留命运,通过对受压心肌细胞货物的吞噬来增强其功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Primitive macrophages induce sarcomeric maturation and functional enhancement of developing human cardiac microtissues via efferocytic pathways

Primitive macrophages induce sarcomeric maturation and functional enhancement of developing human cardiac microtissues via efferocytic pathways
Yolk sac macrophages are the first to seed the developing heart; however, owing to a lack of accessible tissue, there is no understanding of their roles in human heart development and function. In this study, we bridge this gap by differentiating human embryonic stem (hES) cells into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine-dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function. Hamidzada et al. show that human pluripotent stem cell–derived macrophages are educated into a tissue-resident fate within human cardiac microtissues, enhancing its function via efferocytic ingestion of stressed cardiomyocyte cargo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信