大脑启发尖峰神经网络中的终身学习和不断演化的联想记忆

Nikola K Kasabov
{"title":"大脑启发尖峰神经网络中的终身学习和不断演化的联想记忆","authors":"Nikola K Kasabov","doi":"10.15406/mojabb.2024.08.00208","DOIUrl":null,"url":null,"abstract":"The paper argues that evolving associative memories (EAM), that are manifested in all biological systems and realised in the human brain through life-long learning (LLL), can be realised in brain-inspired computational architectures based on spiking neural networks (SNN). The paper points to the importance of the duality of the concepts of EAM and LLL for future AI systems.","PeriodicalId":411709,"journal":{"name":"MOJ Applied Bionics and Biomechanics","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life-long learning and evolving associative memories in brain-inspired spiking neural networks\",\"authors\":\"Nikola K Kasabov\",\"doi\":\"10.15406/mojabb.2024.08.00208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper argues that evolving associative memories (EAM), that are manifested in all biological systems and realised in the human brain through life-long learning (LLL), can be realised in brain-inspired computational architectures based on spiking neural networks (SNN). The paper points to the importance of the duality of the concepts of EAM and LLL for future AI systems.\",\"PeriodicalId\":411709,\"journal\":{\"name\":\"MOJ Applied Bionics and Biomechanics\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MOJ Applied Bionics and Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/mojabb.2024.08.00208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOJ Applied Bionics and Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/mojabb.2024.08.00208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

论文认为,进化关联记忆(EAM)体现在所有生物系统中,并通过终身学习(LLL)在人脑中得以实现,它可以在基于尖峰神经网络(SNN)的脑启发计算架构中得以实现。论文指出了 EAM 和 LLL 概念的双重性对未来人工智能系统的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life-long learning and evolving associative memories in brain-inspired spiking neural networks
The paper argues that evolving associative memories (EAM), that are manifested in all biological systems and realised in the human brain through life-long learning (LLL), can be realised in brain-inspired computational architectures based on spiking neural networks (SNN). The paper points to the importance of the duality of the concepts of EAM and LLL for future AI systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信