Ya-ning Han, Zheng Wei, Yixuan Wang, D. Huo, Pengqi Shiyu Zhang Zhang, Ming Li, Jun Ma, K. Wu, Yong-Guang Zheng, yuan he, Zhi-Yong Deng, Tian-Zhi Jiang, Xiang-jin Zhou, Jin Li, Yun Zhang, Yu Zahang, Junrun Wang, Xiaodong Su, Ze-En 姚泽恩 Yao
{"title":"计算中子诱发 235U 裂变的裂变碎片产率和动能分布的能量依赖性","authors":"Ya-ning Han, Zheng Wei, Yixuan Wang, D. Huo, Pengqi Shiyu Zhang Zhang, Ming Li, Jun Ma, K. Wu, Yong-Guang Zheng, yuan he, Zhi-Yong Deng, Tian-Zhi Jiang, Xiang-jin Zhou, Jin Li, Yun Zhang, Yu Zahang, Junrun Wang, Xiaodong Su, Ze-En 姚泽恩 Yao","doi":"10.1088/1674-1137/ad485c","DOIUrl":null,"url":null,"abstract":"\n Fission fragments yields and average total kinetic energy are the fundamental nuclear data essential for applications in nuclear energy and the study of nuclear devices. Certain fission products, such as 95Zr, 99Mo, 140Ba, 144Ce and 147Nd, serve as burnup monitors, assessing the number of fissions induced by neutrons on 235U. However, current experimental data for these fission products worldwide are inconsistent, introducing significant uncertainty into related scientific research. This study employs the Potential-driving Model to calculate the independent yields of 235U and evaluates its advantages in such calculations. Additionally, we investigate the energy dependence of independent yields for select important products. Furthermore, we calculate the cumulative yields of 95Zr, 99Mo, 140Ba, 144Ce, and 147Nd, and compare them with existing literature data to explore the energy dependence of fission products for 235U. Given the lack of fission product yield data above 14.8 MeV, we extend our calculated incident neutron energy to 20 MeV, aiming to support future scientific research. The Geant4 physical model does not consider the influence of incident neutron energy on the average total kinetic energy of fission fragments; thus, we introduce the excitation function of the total kinetic energy of fission fragments recommended by Madland et al., which effectively describes the experimental data of the average total kinetic energy of fragments formed in 235U fission. This study offers a detailed discussion on the energy dependence of fission product yield and average total kinetic energy.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of the energy dependence of fission fragments yields and kinetic energies distributions for neutron-induced 235U fission\",\"authors\":\"Ya-ning Han, Zheng Wei, Yixuan Wang, D. Huo, Pengqi Shiyu Zhang Zhang, Ming Li, Jun Ma, K. Wu, Yong-Guang Zheng, yuan he, Zhi-Yong Deng, Tian-Zhi Jiang, Xiang-jin Zhou, Jin Li, Yun Zhang, Yu Zahang, Junrun Wang, Xiaodong Su, Ze-En 姚泽恩 Yao\",\"doi\":\"10.1088/1674-1137/ad485c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fission fragments yields and average total kinetic energy are the fundamental nuclear data essential for applications in nuclear energy and the study of nuclear devices. Certain fission products, such as 95Zr, 99Mo, 140Ba, 144Ce and 147Nd, serve as burnup monitors, assessing the number of fissions induced by neutrons on 235U. However, current experimental data for these fission products worldwide are inconsistent, introducing significant uncertainty into related scientific research. This study employs the Potential-driving Model to calculate the independent yields of 235U and evaluates its advantages in such calculations. Additionally, we investigate the energy dependence of independent yields for select important products. Furthermore, we calculate the cumulative yields of 95Zr, 99Mo, 140Ba, 144Ce, and 147Nd, and compare them with existing literature data to explore the energy dependence of fission products for 235U. Given the lack of fission product yield data above 14.8 MeV, we extend our calculated incident neutron energy to 20 MeV, aiming to support future scientific research. The Geant4 physical model does not consider the influence of incident neutron energy on the average total kinetic energy of fission fragments; thus, we introduce the excitation function of the total kinetic energy of fission fragments recommended by Madland et al., which effectively describes the experimental data of the average total kinetic energy of fragments formed in 235U fission. This study offers a detailed discussion on the energy dependence of fission product yield and average total kinetic energy.\",\"PeriodicalId\":10250,\"journal\":{\"name\":\"中国物理C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国物理C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1137/ad485c\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad485c","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Calculation of the energy dependence of fission fragments yields and kinetic energies distributions for neutron-induced 235U fission
Fission fragments yields and average total kinetic energy are the fundamental nuclear data essential for applications in nuclear energy and the study of nuclear devices. Certain fission products, such as 95Zr, 99Mo, 140Ba, 144Ce and 147Nd, serve as burnup monitors, assessing the number of fissions induced by neutrons on 235U. However, current experimental data for these fission products worldwide are inconsistent, introducing significant uncertainty into related scientific research. This study employs the Potential-driving Model to calculate the independent yields of 235U and evaluates its advantages in such calculations. Additionally, we investigate the energy dependence of independent yields for select important products. Furthermore, we calculate the cumulative yields of 95Zr, 99Mo, 140Ba, 144Ce, and 147Nd, and compare them with existing literature data to explore the energy dependence of fission products for 235U. Given the lack of fission product yield data above 14.8 MeV, we extend our calculated incident neutron energy to 20 MeV, aiming to support future scientific research. The Geant4 physical model does not consider the influence of incident neutron energy on the average total kinetic energy of fission fragments; thus, we introduce the excitation function of the total kinetic energy of fission fragments recommended by Madland et al., which effectively describes the experimental data of the average total kinetic energy of fragments formed in 235U fission. This study offers a detailed discussion on the energy dependence of fission product yield and average total kinetic energy.
期刊介绍:
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of:
Particle physics;
Nuclear physics;
Particle and nuclear astrophysics;
Cosmology;
Accelerator physics.
The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication.
The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal.
The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.