D. Meko, Franco Biondi, Alan H. Taylor, I. Panyushkina, R. Thaxton, A. Prusevich, A. Shiklomanov, Richard B Lammers, S. Glidden
{"title":"从树木年轮和水平衡模型看特卢基-卡森河流域的径流变异性","authors":"D. Meko, Franco Biondi, Alan H. Taylor, I. Panyushkina, R. Thaxton, A. Prusevich, A. Shiklomanov, Richard B Lammers, S. Glidden","doi":"10.1175/ei-d-23-0018.1","DOIUrl":null,"url":null,"abstract":"\nRegional warming and associated changes in hydrologic systems pose challenges to water supply management in river basins of the western United States, and call for improved understanding of the spatial and temporal variability of runoff. We apply a network of total-width, subannual width and delta blue intensity tree-ring chronologies in combination with a monthly water balance model to identify droughts and their associated precipitation (P) and temperature (T) footprints in the Truckee-Carson River basin (TCRB). Stepwise regression gave reasonably accurate reconstructions, from 1688 to 1999, of seasonal P and T (e.g., R2 = 0.50 for May-Sept T). These were disaggregated to monthly values, which were then routed through a water balance model to generate “indirectly” reconstructed runoff. Reconstructed and observed annual runoff correlate highly (r = 0.80) from 1906 to 1999. The extended runoff record shows that 20th century droughts are unmatched in severity in a 300-year context. Our water balance modeling reconstruction advances the conventional regression-based dendrochronological methods as it allows for multiple hydrologic components (evapotranspiration, snowmelt, etc.) to be evaluated. We found that imposed warming (3 °C and 6 °C) generally exacerbated the runoff deficits in past droughts but that the impact could be lessened and sometimes even reversed in some years by compensating factors, including changes in snow regime. Our results underscore the value of combining multi-proxy tree-ring data with water balance modelling to place past hydrologic droughts in the context of climate change.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Runoff variability in the Truckee-Carson River basin from tree rings and a water balance model\",\"authors\":\"D. Meko, Franco Biondi, Alan H. Taylor, I. Panyushkina, R. Thaxton, A. Prusevich, A. Shiklomanov, Richard B Lammers, S. Glidden\",\"doi\":\"10.1175/ei-d-23-0018.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nRegional warming and associated changes in hydrologic systems pose challenges to water supply management in river basins of the western United States, and call for improved understanding of the spatial and temporal variability of runoff. We apply a network of total-width, subannual width and delta blue intensity tree-ring chronologies in combination with a monthly water balance model to identify droughts and their associated precipitation (P) and temperature (T) footprints in the Truckee-Carson River basin (TCRB). Stepwise regression gave reasonably accurate reconstructions, from 1688 to 1999, of seasonal P and T (e.g., R2 = 0.50 for May-Sept T). These were disaggregated to monthly values, which were then routed through a water balance model to generate “indirectly” reconstructed runoff. Reconstructed and observed annual runoff correlate highly (r = 0.80) from 1906 to 1999. The extended runoff record shows that 20th century droughts are unmatched in severity in a 300-year context. Our water balance modeling reconstruction advances the conventional regression-based dendrochronological methods as it allows for multiple hydrologic components (evapotranspiration, snowmelt, etc.) to be evaluated. We found that imposed warming (3 °C and 6 °C) generally exacerbated the runoff deficits in past droughts but that the impact could be lessened and sometimes even reversed in some years by compensating factors, including changes in snow regime. Our results underscore the value of combining multi-proxy tree-ring data with water balance modelling to place past hydrologic droughts in the context of climate change.\",\"PeriodicalId\":51020,\"journal\":{\"name\":\"Earth Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Interactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/ei-d-23-0018.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/ei-d-23-0018.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Runoff variability in the Truckee-Carson River basin from tree rings and a water balance model
Regional warming and associated changes in hydrologic systems pose challenges to water supply management in river basins of the western United States, and call for improved understanding of the spatial and temporal variability of runoff. We apply a network of total-width, subannual width and delta blue intensity tree-ring chronologies in combination with a monthly water balance model to identify droughts and their associated precipitation (P) and temperature (T) footprints in the Truckee-Carson River basin (TCRB). Stepwise regression gave reasonably accurate reconstructions, from 1688 to 1999, of seasonal P and T (e.g., R2 = 0.50 for May-Sept T). These were disaggregated to monthly values, which were then routed through a water balance model to generate “indirectly” reconstructed runoff. Reconstructed and observed annual runoff correlate highly (r = 0.80) from 1906 to 1999. The extended runoff record shows that 20th century droughts are unmatched in severity in a 300-year context. Our water balance modeling reconstruction advances the conventional regression-based dendrochronological methods as it allows for multiple hydrologic components (evapotranspiration, snowmelt, etc.) to be evaluated. We found that imposed warming (3 °C and 6 °C) generally exacerbated the runoff deficits in past droughts but that the impact could be lessened and sometimes even reversed in some years by compensating factors, including changes in snow regime. Our results underscore the value of combining multi-proxy tree-ring data with water balance modelling to place past hydrologic droughts in the context of climate change.
期刊介绍:
Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.