Zahraa Abdullah Ali, Z. Abduljabbar, H. Al-Asadi, V. O. Nyangaresi, I. Q. Abduljaleel, Abdulla J. Y. Aldarwish
{"title":"智能电网中消费者和服务提供商信息传输的可证明安全的匿名验证协议","authors":"Zahraa Abdullah Ali, Z. Abduljabbar, H. Al-Asadi, V. O. Nyangaresi, I. Q. Abduljaleel, Abdulla J. Y. Aldarwish","doi":"10.3390/cryptography8020020","DOIUrl":null,"url":null,"abstract":"Smart grids integrate information technology, decision support systems, communication networks, and sensing technologies. All these components cooperate to facilitate dynamic power adjustments based on received client consumption reports. Although this brings forth energy efficiency, the transmission of sensitive data over the public internet exposes these networks to numerous attacks. To this end, numerous security solutions have been presented recently. Most of these techniques deploy conventional cryptographic systems such as public key infrastructure, blockchains, and physically unclonable functions that have either performance or security issues. In this paper, a fairly efficient authentication scheme is developed and analyzed. Its formal security analysis is carried out using the Burrows–Abadi–Needham (BAN) logic, which shows that the session key negotiated is provably secure. We also execute a semantic security analysis of this protocol to demonstrate that it can resist typical smart grid attacks such as privileged insider, guessing, eavesdropping, and ephemeral secret leakages. Moreover, it has the lowest amount of computation costs and relatively lower communication overheads as well as storage costs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 43","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Provably Secure Anonymous Authentication Protocol for Consumer and Service Provider Information Transmissions in Smart Grids\",\"authors\":\"Zahraa Abdullah Ali, Z. Abduljabbar, H. Al-Asadi, V. O. Nyangaresi, I. Q. Abduljaleel, Abdulla J. Y. Aldarwish\",\"doi\":\"10.3390/cryptography8020020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart grids integrate information technology, decision support systems, communication networks, and sensing technologies. All these components cooperate to facilitate dynamic power adjustments based on received client consumption reports. Although this brings forth energy efficiency, the transmission of sensitive data over the public internet exposes these networks to numerous attacks. To this end, numerous security solutions have been presented recently. Most of these techniques deploy conventional cryptographic systems such as public key infrastructure, blockchains, and physically unclonable functions that have either performance or security issues. In this paper, a fairly efficient authentication scheme is developed and analyzed. Its formal security analysis is carried out using the Burrows–Abadi–Needham (BAN) logic, which shows that the session key negotiated is provably secure. We also execute a semantic security analysis of this protocol to demonstrate that it can resist typical smart grid attacks such as privileged insider, guessing, eavesdropping, and ephemeral secret leakages. Moreover, it has the lowest amount of computation costs and relatively lower communication overheads as well as storage costs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" 43\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryptography8020020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography8020020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Provably Secure Anonymous Authentication Protocol for Consumer and Service Provider Information Transmissions in Smart Grids
Smart grids integrate information technology, decision support systems, communication networks, and sensing technologies. All these components cooperate to facilitate dynamic power adjustments based on received client consumption reports. Although this brings forth energy efficiency, the transmission of sensitive data over the public internet exposes these networks to numerous attacks. To this end, numerous security solutions have been presented recently. Most of these techniques deploy conventional cryptographic systems such as public key infrastructure, blockchains, and physically unclonable functions that have either performance or security issues. In this paper, a fairly efficient authentication scheme is developed and analyzed. Its formal security analysis is carried out using the Burrows–Abadi–Needham (BAN) logic, which shows that the session key negotiated is provably secure. We also execute a semantic security analysis of this protocol to demonstrate that it can resist typical smart grid attacks such as privileged insider, guessing, eavesdropping, and ephemeral secret leakages. Moreover, it has the lowest amount of computation costs and relatively lower communication overheads as well as storage costs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.