复杂地形上的卫星风力预报计算机视觉方法

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Décio Alves, Fábio Mendonça, S. Mostafa, F. Morgado‐Dias
{"title":"复杂地形上的卫星风力预报计算机视觉方法","authors":"Décio Alves, Fábio Mendonça, S. Mostafa, F. Morgado‐Dias","doi":"10.1088/2515-7620/ad4984","DOIUrl":null,"url":null,"abstract":"\n Accurate wind speed and direction nowcasting in regions with complex terrains remains a challenge, and critical for applications like aviation. This study proposes a new methodology by harnessing Convolutional Neural Networks and Long Short-Term Memory models with satellite imagery to address wind predictions in a complex terrain, centered on Madeira International Airport, Portugal, using satellite data as input. Results demonstrated adeptness in capturing wind transitions, pinpointing shifts up to two hours ahead, with errors of 1.74 m/s and 30.98º for wind speed and direction, respectively. Highlighting its aptitude in capturing the intricate atmospheric dynamics of such areas, the study reinforces the viability of computer vision for remote sites where conventional monitoring is either inefficient or expensive. With the widespread availability of satellite imagery and extensive satellite coverage, this method presents a scalable approach for worldwide applications.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computer Vision Approach for Satellite-Driven Wind Nowcasting over Complex Terrains\",\"authors\":\"Décio Alves, Fábio Mendonça, S. Mostafa, F. Morgado‐Dias\",\"doi\":\"10.1088/2515-7620/ad4984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Accurate wind speed and direction nowcasting in regions with complex terrains remains a challenge, and critical for applications like aviation. This study proposes a new methodology by harnessing Convolutional Neural Networks and Long Short-Term Memory models with satellite imagery to address wind predictions in a complex terrain, centered on Madeira International Airport, Portugal, using satellite data as input. Results demonstrated adeptness in capturing wind transitions, pinpointing shifts up to two hours ahead, with errors of 1.74 m/s and 30.98º for wind speed and direction, respectively. Highlighting its aptitude in capturing the intricate atmospheric dynamics of such areas, the study reinforces the viability of computer vision for remote sites where conventional monitoring is either inefficient or expensive. With the widespread availability of satellite imagery and extensive satellite coverage, this method presents a scalable approach for worldwide applications.\",\"PeriodicalId\":48496,\"journal\":{\"name\":\"Environmental Research Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Communications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7620/ad4984\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Communications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/2515-7620/ad4984","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在地形复杂的地区进行准确的风速和风向预报仍然是一项挑战,对于航空等应用领域至关重要。本研究提出了一种新方法,利用卷积神经网络和长短期记忆模型以及卫星图像,以葡萄牙马德拉国际机场为中心,利用卫星数据作为输入,对复杂地形进行风力预测。结果表明,该系统能够准确捕捉风向变化,精确定位风速和风向变化,误差分别为 1.74 米/秒和 30.98º,可提前两小时进行预测。这项研究强调了计算机视觉在捕捉这些地区错综复杂的大气动态方面的能力,从而加强了计算机视觉在传统监测效率低下或成本高昂的偏远地区的可行性。随着卫星图像的普及和卫星的广泛覆盖,这种方法为全球应用提供了一种可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computer Vision Approach for Satellite-Driven Wind Nowcasting over Complex Terrains
Accurate wind speed and direction nowcasting in regions with complex terrains remains a challenge, and critical for applications like aviation. This study proposes a new methodology by harnessing Convolutional Neural Networks and Long Short-Term Memory models with satellite imagery to address wind predictions in a complex terrain, centered on Madeira International Airport, Portugal, using satellite data as input. Results demonstrated adeptness in capturing wind transitions, pinpointing shifts up to two hours ahead, with errors of 1.74 m/s and 30.98º for wind speed and direction, respectively. Highlighting its aptitude in capturing the intricate atmospheric dynamics of such areas, the study reinforces the viability of computer vision for remote sites where conventional monitoring is either inefficient or expensive. With the widespread availability of satellite imagery and extensive satellite coverage, this method presents a scalable approach for worldwide applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research Communications
Environmental Research Communications ENVIRONMENTAL SCIENCES-
CiteScore
3.50
自引率
0.00%
发文量
136
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信