传播模式的动力学:对分数系统的分析研究

Mostafa M. A. Khater
{"title":"传播模式的动力学:对分数系统的分析研究","authors":"Mostafa M. A. Khater","doi":"10.1142/s0217984924503974","DOIUrl":null,"url":null,"abstract":"Recent years have seen a growing interest in fractional differential equations, particularly the fractional Chaffee-Infante ([Formula: see text]) equation, pivotal for understanding dynamics governed by fractional orders in specific physical systems. Exploring solitary wave solutions, this study employs the extended Khater method and truncated Mittag-Leffler function properties to formulate tailored solutions for the ([Formula: see text]) model. Through a traveling wave ansatz, the equation transforms into a nonlinear ordinary differential equation, revealing intricate propagation patterns of solitary waves. Visual representations aid comprehension, while rigorous validation ensures solution precision, ultimately providing a comprehensive understanding of system responses to external stimuli. This study effectively integrates analytical and numerical methodologies to derive precise solitary wave solutions, with significant implications for advancing comprehension of complex phenomena in various disciplines governed by fractional-order dynamics.","PeriodicalId":503716,"journal":{"name":"Modern Physics Letters B","volume":" 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of propagation patterns: An analytical investigation into fractional systems\",\"authors\":\"Mostafa M. A. Khater\",\"doi\":\"10.1142/s0217984924503974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen a growing interest in fractional differential equations, particularly the fractional Chaffee-Infante ([Formula: see text]) equation, pivotal for understanding dynamics governed by fractional orders in specific physical systems. Exploring solitary wave solutions, this study employs the extended Khater method and truncated Mittag-Leffler function properties to formulate tailored solutions for the ([Formula: see text]) model. Through a traveling wave ansatz, the equation transforms into a nonlinear ordinary differential equation, revealing intricate propagation patterns of solitary waves. Visual representations aid comprehension, while rigorous validation ensures solution precision, ultimately providing a comprehensive understanding of system responses to external stimuli. This study effectively integrates analytical and numerical methodologies to derive precise solitary wave solutions, with significant implications for advancing comprehension of complex phenomena in various disciplines governed by fractional-order dynamics.\",\"PeriodicalId\":503716,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\" 39\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217984924503974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对分式微分方程的兴趣与日俱增,尤其是分式 Chaffee-Infante ([公式:见正文])方程,它对于理解特定物理系统中由分式阶数支配的动力学至关重要。为探索孤波解,本研究采用扩展 Khater 方法和截断 Mittag-Leffler 函数特性,为([公式:见正文])模型提出量身定制的解。通过行波反演,方程转化为非线性常微分方程,揭示了孤波错综复杂的传播模式。直观的表示有助于理解,而严格的验证确保了求解的精确性,最终提供了对系统对外部刺激反应的全面理解。这项研究有效地整合了分析和数值方法,推导出精确的孤波解,对推动理解受分数阶动力学支配的各学科中的复杂现象具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of propagation patterns: An analytical investigation into fractional systems
Recent years have seen a growing interest in fractional differential equations, particularly the fractional Chaffee-Infante ([Formula: see text]) equation, pivotal for understanding dynamics governed by fractional orders in specific physical systems. Exploring solitary wave solutions, this study employs the extended Khater method and truncated Mittag-Leffler function properties to formulate tailored solutions for the ([Formula: see text]) model. Through a traveling wave ansatz, the equation transforms into a nonlinear ordinary differential equation, revealing intricate propagation patterns of solitary waves. Visual representations aid comprehension, while rigorous validation ensures solution precision, ultimately providing a comprehensive understanding of system responses to external stimuli. This study effectively integrates analytical and numerical methodologies to derive precise solitary wave solutions, with significant implications for advancing comprehension of complex phenomena in various disciplines governed by fractional-order dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信