基于强稀疏 LP-1 规范的三维高分辨率拉顿变换及其应用

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Wei Shi, Weihong Wang, Ying Shi, S. Chen, Zhiwei Li, Ning Wang
{"title":"基于强稀疏 LP-1 规范的三维高分辨率拉顿变换及其应用","authors":"Wei Shi, Weihong Wang, Ying Shi, S. Chen, Zhiwei Li, Ning Wang","doi":"10.1093/jge/gxae052","DOIUrl":null,"url":null,"abstract":"\n Multiple reflections are among the most challenging noises to suppress in seismic data, as they differ from effective waves only in terms of apparent velocity. Besides, the Radon transform, an essential technique for attenuating multiple reflections, has been widely incorporated into various commercial software packages. Thus, this study introduces a 3D Radon transform method based on the LP‒1 norm to enhance sparsity-constraining capability in the transform domain, leveraging high-resolution Radon transform techniques. Specifically, an iteratively reweighted least squares (IRLS) algorithm is employed to obtain the transformed data in the Radon domain. Given that the LP‒1 norm is applied to seismic data processing for the first time, this paper theoretically demonstrates its powerful sparsity-constraining capability. Indeed, the proposed strategy enhances energy concentration in the Radon transform domain, better-separating primaries from multiples and ultimately suppressing the multiples. Both model tests and real data indicate that the 3D Radon transform constrained by the LP‒1 norm outperforms existing high-resolution Radon transform methods with sparsity constraints regarding energy concentration and effectiveness in multiple reflection attenuation.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D high-resolution Radon transform based on strong sparse LP‒1 norm and its applications\",\"authors\":\"Wei Shi, Weihong Wang, Ying Shi, S. Chen, Zhiwei Li, Ning Wang\",\"doi\":\"10.1093/jge/gxae052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multiple reflections are among the most challenging noises to suppress in seismic data, as they differ from effective waves only in terms of apparent velocity. Besides, the Radon transform, an essential technique for attenuating multiple reflections, has been widely incorporated into various commercial software packages. Thus, this study introduces a 3D Radon transform method based on the LP‒1 norm to enhance sparsity-constraining capability in the transform domain, leveraging high-resolution Radon transform techniques. Specifically, an iteratively reweighted least squares (IRLS) algorithm is employed to obtain the transformed data in the Radon domain. Given that the LP‒1 norm is applied to seismic data processing for the first time, this paper theoretically demonstrates its powerful sparsity-constraining capability. Indeed, the proposed strategy enhances energy concentration in the Radon transform domain, better-separating primaries from multiples and ultimately suppressing the multiples. Both model tests and real data indicate that the 3D Radon transform constrained by the LP‒1 norm outperforms existing high-resolution Radon transform methods with sparsity constraints regarding energy concentration and effectiveness in multiple reflection attenuation.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae052\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae052","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

多重反射是地震数据中最难抑制的噪声之一,因为它们与有效波的区别仅在于视速度不同。此外,Radon 变换是衰减多重反射的基本技术,已广泛应用于各种商业软件包中。因此,本研究引入了一种基于 LP-1 规范的三维 Radon 变换方法,利用高分辨率 Radon 变换技术,增强变换域的稀疏性约束能力。具体来说,该方法采用了一种迭代加权最小二乘法(IRLS)算法来获取 Radon 域中的变换数据。鉴于 LP-1 准则首次应用于地震数据处理,本文从理论上证明了其强大的稀疏性约束能力。事实上,所提出的策略增强了 Radon 变换域中的能量集中度,更好地分离了基数和倍数,并最终抑制了倍数。模型试验和实际数据都表明,在能量集中和多重反射衰减效果方面,受 LP-1 规范约束的三维 Radon 变换优于现有的带稀疏性约束的高分辨率 Radon 变换方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D high-resolution Radon transform based on strong sparse LP‒1 norm and its applications
Multiple reflections are among the most challenging noises to suppress in seismic data, as they differ from effective waves only in terms of apparent velocity. Besides, the Radon transform, an essential technique for attenuating multiple reflections, has been widely incorporated into various commercial software packages. Thus, this study introduces a 3D Radon transform method based on the LP‒1 norm to enhance sparsity-constraining capability in the transform domain, leveraging high-resolution Radon transform techniques. Specifically, an iteratively reweighted least squares (IRLS) algorithm is employed to obtain the transformed data in the Radon domain. Given that the LP‒1 norm is applied to seismic data processing for the first time, this paper theoretically demonstrates its powerful sparsity-constraining capability. Indeed, the proposed strategy enhances energy concentration in the Radon transform domain, better-separating primaries from multiples and ultimately suppressing the multiples. Both model tests and real data indicate that the 3D Radon transform constrained by the LP‒1 norm outperforms existing high-resolution Radon transform methods with sparsity constraints regarding energy concentration and effectiveness in multiple reflection attenuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信