自由曲线、特征曲线和曲线铅笔

IF 0.8 3区 数学 Q2 MATHEMATICS
Roberta Di Gennaro, Giovanna Ilardi, Rosa Maria Miró-Roig, Henry Schenck, Jean Vallès
{"title":"自由曲线、特征曲线和曲线铅笔","authors":"Roberta Di Gennaro,&nbsp;Giovanna Ilardi,&nbsp;Rosa Maria Miró-Roig,&nbsp;Henry Schenck,&nbsp;Jean Vallès","doi":"10.1112/blms.13063","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>=</mo>\n <mi>K</mi>\n <mo>[</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>,</mo>\n <mi>z</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$R=\\mathbb {K}[x,y,z]$</annotation>\n </semantics></math>. A reduced plane curve <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>=</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>)</mo>\n </mrow>\n <mo>⊂</mo>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$C=V(f)\\subset \\mathbb {P}^2$</annotation>\n </semantics></math> is <i>free</i> if its associated module of tangent derivations <span></span><math>\n <semantics>\n <mrow>\n <mi>Der</mi>\n <mo>(</mo>\n <mi>f</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Der}(f)$</annotation>\n </semantics></math> is a free <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-module, or equivalently if the corresponding sheaf <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>log</mi>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$T_ {\\mathbb {P}^2 }(-\\log C)$</annotation>\n </semantics></math> of vector fields tangent to <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> splits as a direct sum of line bundles on <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {P}^2$</annotation>\n </semantics></math>. In general, free curves are difficult to find, and in this paper, we describe a new method for constructing free curves in <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {P}^2$</annotation>\n </semantics></math>. The key tools in our approach are eigenschemes and pencils of curves, combined with an interpretation of Saito's criterion in this context. Previous constructions typically applied only to curves with quasihomogeneous singularities, which is not necessary in our approach. We illustrate our method by constructing large families of free curves.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2424-2440"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free curves, eigenschemes, and pencils of curves\",\"authors\":\"Roberta Di Gennaro,&nbsp;Giovanna Ilardi,&nbsp;Rosa Maria Miró-Roig,&nbsp;Henry Schenck,&nbsp;Jean Vallès\",\"doi\":\"10.1112/blms.13063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>=</mo>\\n <mi>K</mi>\\n <mo>[</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>,</mo>\\n <mi>z</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$R=\\\\mathbb {K}[x,y,z]$</annotation>\\n </semantics></math>. A reduced plane curve <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>=</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>⊂</mo>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$C=V(f)\\\\subset \\\\mathbb {P}^2$</annotation>\\n </semantics></math> is <i>free</i> if its associated module of tangent derivations <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Der</mi>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{Der}(f)$</annotation>\\n </semantics></math> is a free <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math>-module, or equivalently if the corresponding sheaf <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>log</mi>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$T_ {\\\\mathbb {P}^2 }(-\\\\log C)$</annotation>\\n </semantics></math> of vector fields tangent to <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$C$</annotation>\\n </semantics></math> splits as a direct sum of line bundles on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^2$</annotation>\\n </semantics></math>. In general, free curves are difficult to find, and in this paper, we describe a new method for constructing free curves in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^2$</annotation>\\n </semantics></math>. The key tools in our approach are eigenschemes and pencils of curves, combined with an interpretation of Saito's criterion in this context. Previous constructions typically applied only to curves with quasihomogeneous singularities, which is not necessary in our approach. We illustrate our method by constructing large families of free curves.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2424-2440\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13063\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13063","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让......,如果一条还原平面曲线的相关切向派生模块是一个自由模块,或者等价地,如果与......相切的相应向量场舍弗分裂为......上线束的直接和,那么这条曲线就是自由曲线。一般来说,自由曲线很难找到,在本文中,我们描述了一种在.NET 中构造自由曲线的新方法。我们方法的关键工具是曲线的特征结构和铅笔,并结合在此背景下对斋藤判据的解释。以前的构造通常只适用于具有准同质奇点的曲线,而我们的方法不需要这种奇点。我们通过构建自由曲线的大族来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free curves, eigenschemes, and pencils of curves

Let R = K [ x , y , z ] $R=\mathbb {K}[x,y,z]$ . A reduced plane curve C = V ( f ) P 2 $C=V(f)\subset \mathbb {P}^2$ is free if its associated module of tangent derivations Der ( f ) $\mathrm{Der}(f)$ is a free R $R$ -module, or equivalently if the corresponding sheaf T P 2 ( log C ) $T_ {\mathbb {P}^2 }(-\log C)$ of vector fields tangent to C $C$ splits as a direct sum of line bundles on P 2 $\mathbb {P}^2$ . In general, free curves are difficult to find, and in this paper, we describe a new method for constructing free curves in P 2 $\mathbb {P}^2$ . The key tools in our approach are eigenschemes and pencils of curves, combined with an interpretation of Saito's criterion in this context. Previous constructions typically applied only to curves with quasihomogeneous singularities, which is not necessary in our approach. We illustrate our method by constructing large families of free curves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信