Roberta Di Gennaro, Giovanna Ilardi, Rosa Maria Miró-Roig, Henry Schenck, Jean Vallès
{"title":"自由曲线、特征曲线和曲线铅笔","authors":"Roberta Di Gennaro, Giovanna Ilardi, Rosa Maria Miró-Roig, Henry Schenck, Jean Vallès","doi":"10.1112/blms.13063","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>=</mo>\n <mi>K</mi>\n <mo>[</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>,</mo>\n <mi>z</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$R=\\mathbb {K}[x,y,z]$</annotation>\n </semantics></math>. A reduced plane curve <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>=</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>)</mo>\n </mrow>\n <mo>⊂</mo>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$C=V(f)\\subset \\mathbb {P}^2$</annotation>\n </semantics></math> is <i>free</i> if its associated module of tangent derivations <span></span><math>\n <semantics>\n <mrow>\n <mi>Der</mi>\n <mo>(</mo>\n <mi>f</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Der}(f)$</annotation>\n </semantics></math> is a free <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-module, or equivalently if the corresponding sheaf <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>log</mi>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$T_ {\\mathbb {P}^2 }(-\\log C)$</annotation>\n </semantics></math> of vector fields tangent to <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> splits as a direct sum of line bundles on <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {P}^2$</annotation>\n </semantics></math>. In general, free curves are difficult to find, and in this paper, we describe a new method for constructing free curves in <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {P}^2$</annotation>\n </semantics></math>. The key tools in our approach are eigenschemes and pencils of curves, combined with an interpretation of Saito's criterion in this context. Previous constructions typically applied only to curves with quasihomogeneous singularities, which is not necessary in our approach. We illustrate our method by constructing large families of free curves.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2424-2440"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free curves, eigenschemes, and pencils of curves\",\"authors\":\"Roberta Di Gennaro, Giovanna Ilardi, Rosa Maria Miró-Roig, Henry Schenck, Jean Vallès\",\"doi\":\"10.1112/blms.13063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>=</mo>\\n <mi>K</mi>\\n <mo>[</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>,</mo>\\n <mi>z</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$R=\\\\mathbb {K}[x,y,z]$</annotation>\\n </semantics></math>. A reduced plane curve <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>=</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>⊂</mo>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$C=V(f)\\\\subset \\\\mathbb {P}^2$</annotation>\\n </semantics></math> is <i>free</i> if its associated module of tangent derivations <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Der</mi>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{Der}(f)$</annotation>\\n </semantics></math> is a free <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math>-module, or equivalently if the corresponding sheaf <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>log</mi>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$T_ {\\\\mathbb {P}^2 }(-\\\\log C)$</annotation>\\n </semantics></math> of vector fields tangent to <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$C$</annotation>\\n </semantics></math> splits as a direct sum of line bundles on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^2$</annotation>\\n </semantics></math>. In general, free curves are difficult to find, and in this paper, we describe a new method for constructing free curves in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^2$</annotation>\\n </semantics></math>. The key tools in our approach are eigenschemes and pencils of curves, combined with an interpretation of Saito's criterion in this context. Previous constructions typically applied only to curves with quasihomogeneous singularities, which is not necessary in our approach. We illustrate our method by constructing large families of free curves.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 7\",\"pages\":\"2424-2440\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13063\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13063","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let . A reduced plane curve is free if its associated module of tangent derivations is a free -module, or equivalently if the corresponding sheaf of vector fields tangent to splits as a direct sum of line bundles on . In general, free curves are difficult to find, and in this paper, we describe a new method for constructing free curves in . The key tools in our approach are eigenschemes and pencils of curves, combined with an interpretation of Saito's criterion in this context. Previous constructions typically applied only to curves with quasihomogeneous singularities, which is not necessary in our approach. We illustrate our method by constructing large families of free curves.