可调控 SnO2 纳米结构的绿色合成与光催化能力:为可持续水污染治理探索环境友好型策略

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shalu Gupta, Rakesh Kumar
{"title":"可调控 SnO2 纳米结构的绿色合成与光催化能力:为可持续水污染治理探索环境友好型策略","authors":"Shalu Gupta, Rakesh Kumar","doi":"10.1088/1361-6641/ad49c7","DOIUrl":null,"url":null,"abstract":"\n This study demonstrates a proficient and eco-friendly synthesis of SnO2 nanostructures using a hydrothermal method, without the requirement of extra surfactants. The synthesis was systematically performed by adjusting the molar ratio of stannic chloride to sodium hydroxide and varying the pH settings. It was noted that the pH value rises according to the concentration of sodium hydroxide. A comprehensive analysis was performed to characterize the resulting nanostructures, which involved studying their structural features, chemical composition, morphology, and optical properties. An X-ray diffraction (XRD) analysis showed that increasing the pH values resulted in a noticeable improvement in the crystalline structure and a decrease in the density of surface defects. The SnO2 nanostructures, synthesized using different pH settings, were subsequently assessed for their photocatalytic performance in the degradation of methylene blue (MB) dye under simulated solar irradiation. Surprisingly, the nanostructure produced at higher pH levels showed outstanding results, as 97% of the dye was broken down in just 70 minutes when exposed to simulated solar radiation. The analysis uncovered a maximum rate constant (k) value of 0.04 min−1, determined using pseudo first-order rate kinetics. In order to better understand the photodegradation process, scavenger experiments were performed to identify the active species involved. These investigations provided valuable insights into the complex mechanisms that drive the observed photocatalytic activity. This study not only enhances the progress of SnO2 nanostructures but also highlights their potential as strong and environmentally friendly materials for effective photocatalytic applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis and photocatalytic proficiency of tunable SnO2 nanostructures: unveiling environmental-friendly strategies for sustainable water remediation\",\"authors\":\"Shalu Gupta, Rakesh Kumar\",\"doi\":\"10.1088/1361-6641/ad49c7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study demonstrates a proficient and eco-friendly synthesis of SnO2 nanostructures using a hydrothermal method, without the requirement of extra surfactants. The synthesis was systematically performed by adjusting the molar ratio of stannic chloride to sodium hydroxide and varying the pH settings. It was noted that the pH value rises according to the concentration of sodium hydroxide. A comprehensive analysis was performed to characterize the resulting nanostructures, which involved studying their structural features, chemical composition, morphology, and optical properties. An X-ray diffraction (XRD) analysis showed that increasing the pH values resulted in a noticeable improvement in the crystalline structure and a decrease in the density of surface defects. The SnO2 nanostructures, synthesized using different pH settings, were subsequently assessed for their photocatalytic performance in the degradation of methylene blue (MB) dye under simulated solar irradiation. Surprisingly, the nanostructure produced at higher pH levels showed outstanding results, as 97% of the dye was broken down in just 70 minutes when exposed to simulated solar radiation. The analysis uncovered a maximum rate constant (k) value of 0.04 min−1, determined using pseudo first-order rate kinetics. In order to better understand the photodegradation process, scavenger experiments were performed to identify the active species involved. These investigations provided valuable insights into the complex mechanisms that drive the observed photocatalytic activity. This study not only enhances the progress of SnO2 nanostructures but also highlights their potential as strong and environmentally friendly materials for effective photocatalytic applications.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad49c7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad49c7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了一种利用水热法合成二氧化锡纳米结构的高效环保方法,无需额外的表面活性剂。通过调整氯化锡与氢氧化钠的摩尔比和改变 pH 值设置,系统地进行了合成。结果发现,pH 值随着氢氧化钠浓度的增加而升高。对所得纳米结构的特性进行了全面分析,包括研究其结构特征、化学成分、形态和光学特性。X 射线衍射 (XRD) 分析表明,pH 值升高会明显改善晶体结构,降低表面缺陷的密度。利用不同的 pH 值合成的二氧化锡纳米结构随后在模拟太阳照射下降解亚甲基蓝(MB)染料的光催化性能方面进行了评估。令人惊讶的是,pH 值较高的纳米结构表现出了卓越的性能,在模拟太阳辐射下,仅 70 分钟就分解了 97% 的染料。分析发现,最大速率常数 (k) 值为 0.04 min-1,这是利用伪一阶速率动力学确定的。为了更好地了解光降解过程,还进行了清道夫实验,以确定所涉及的活性物种。这些研究为了解驱动所观察到的光催化活性的复杂机制提供了宝贵的见解。这项研究不仅提高了二氧化锡纳米结构的研究进展,还凸显了其作为强力环保材料在有效光催化应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green synthesis and photocatalytic proficiency of tunable SnO2 nanostructures: unveiling environmental-friendly strategies for sustainable water remediation
This study demonstrates a proficient and eco-friendly synthesis of SnO2 nanostructures using a hydrothermal method, without the requirement of extra surfactants. The synthesis was systematically performed by adjusting the molar ratio of stannic chloride to sodium hydroxide and varying the pH settings. It was noted that the pH value rises according to the concentration of sodium hydroxide. A comprehensive analysis was performed to characterize the resulting nanostructures, which involved studying their structural features, chemical composition, morphology, and optical properties. An X-ray diffraction (XRD) analysis showed that increasing the pH values resulted in a noticeable improvement in the crystalline structure and a decrease in the density of surface defects. The SnO2 nanostructures, synthesized using different pH settings, were subsequently assessed for their photocatalytic performance in the degradation of methylene blue (MB) dye under simulated solar irradiation. Surprisingly, the nanostructure produced at higher pH levels showed outstanding results, as 97% of the dye was broken down in just 70 minutes when exposed to simulated solar radiation. The analysis uncovered a maximum rate constant (k) value of 0.04 min−1, determined using pseudo first-order rate kinetics. In order to better understand the photodegradation process, scavenger experiments were performed to identify the active species involved. These investigations provided valuable insights into the complex mechanisms that drive the observed photocatalytic activity. This study not only enhances the progress of SnO2 nanostructures but also highlights their potential as strong and environmentally friendly materials for effective photocatalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信