{"title":"莱维白噪声分析中的维克乘法及其与非规则测试函数空间上的积分和随机微分的关系","authors":"Kachanovsky N.A","doi":"10.15330/cmp.16.1.61-83","DOIUrl":null,"url":null,"abstract":"We deal with spaces of nonregular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our goal is to study properties of a natural multiplication $-$ a Wick multiplication on these spaces, and to describe the relationship of this multiplication with integration and stochastic differentiation. More exactly, we establish that the Wick product of nonregular test functions is a nonregular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of a generalized stochastic integral; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the generalized stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise; and prove that the operator of stochastic differentiation of first order on the spaces of nonregular test functions satisfies the Leibnitz rule with respect to the Wick multiplication.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wick multiplication and its relationship with integration and stochastic differentiation on spaces of nonregular test functions in the Lévy white noise analysis\",\"authors\":\"Kachanovsky N.A\",\"doi\":\"10.15330/cmp.16.1.61-83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deal with spaces of nonregular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our goal is to study properties of a natural multiplication $-$ a Wick multiplication on these spaces, and to describe the relationship of this multiplication with integration and stochastic differentiation. More exactly, we establish that the Wick product of nonregular test functions is a nonregular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of a generalized stochastic integral; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the generalized stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise; and prove that the operator of stochastic differentiation of first order on the spaces of nonregular test functions satisfies the Leibnitz rule with respect to the Wick multiplication.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.16.1.61-83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.16.1.61-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wick multiplication and its relationship with integration and stochastic differentiation on spaces of nonregular test functions in the Lévy white noise analysis
We deal with spaces of nonregular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our goal is to study properties of a natural multiplication $-$ a Wick multiplication on these spaces, and to describe the relationship of this multiplication with integration and stochastic differentiation. More exactly, we establish that the Wick product of nonregular test functions is a nonregular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of a generalized stochastic integral; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the generalized stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise; and prove that the operator of stochastic differentiation of first order on the spaces of nonregular test functions satisfies the Leibnitz rule with respect to the Wick multiplication.