莱维白噪声分析中的维克乘法及其与非规则测试函数空间上的积分和随机微分的关系

IF 1 Q1 MATHEMATICS
Kachanovsky N.A
{"title":"莱维白噪声分析中的维克乘法及其与非规则测试函数空间上的积分和随机微分的关系","authors":"Kachanovsky N.A","doi":"10.15330/cmp.16.1.61-83","DOIUrl":null,"url":null,"abstract":"We deal with spaces of nonregular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our goal is to study properties of a natural multiplication $-$ a Wick multiplication on these spaces, and to describe the relationship of this multiplication with integration and stochastic differentiation. More exactly, we establish that the Wick product of nonregular test functions is a nonregular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of a generalized stochastic integral; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the generalized stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise; and prove that the operator of stochastic differentiation of first order on the spaces of nonregular test functions satisfies the Leibnitz rule with respect to the Wick multiplication.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wick multiplication and its relationship with integration and stochastic differentiation on spaces of nonregular test functions in the Lévy white noise analysis\",\"authors\":\"Kachanovsky N.A\",\"doi\":\"10.15330/cmp.16.1.61-83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deal with spaces of nonregular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our goal is to study properties of a natural multiplication $-$ a Wick multiplication on these spaces, and to describe the relationship of this multiplication with integration and stochastic differentiation. More exactly, we establish that the Wick product of nonregular test functions is a nonregular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of a generalized stochastic integral; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the generalized stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise; and prove that the operator of stochastic differentiation of first order on the spaces of nonregular test functions satisfies the Leibnitz rule with respect to the Wick multiplication.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.16.1.61-83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.16.1.61-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们处理的是莱维白噪声分析中的非规则测试函数空间,这些空间是利用莱特维诺夫对混沌表示性质的概括而构建的。我们的目标是研究这些空间上的自然乘法 $$-$ Wick 乘法的性质,并描述这种乘法与积分和随机微分的关系。更确切地说,我们确定非规则检验函数的威克乘积是一个非规则检验函数;证明当使用威克乘法时,有可能从广义随机积分的符号中取出一个与时间无关的乘数;为佩蒂斯积分(弱积分)建立一个类似的结果;通过莱维白噪声对原始积分的威克乘积,从形式佩提斯积分中获得广义随机积分的表示;并证明非规则检验函数空间上的一阶随机微分算子满足关于威克乘法的莱布尼茨规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wick multiplication and its relationship with integration and stochastic differentiation on spaces of nonregular test functions in the Lévy white noise analysis
We deal with spaces of nonregular test functions in the Lévy white noise analysis, which are constructed using Lytvynov's generalization of a chaotic representation property. Our goal is to study properties of a natural multiplication $-$ a Wick multiplication on these spaces, and to describe the relationship of this multiplication with integration and stochastic differentiation. More exactly, we establish that the Wick product of nonregular test functions is a nonregular test function; show that when employing the Wick multiplication, it is possible to take a time-independent multiplier out of the sign of a generalized stochastic integral; establish an analog of this result for a Pettis integral (a weak integral); obtain a representation of the generalized stochastic integral via formal Pettis integral from the Wick product of the original integrand by a Lévy white noise; and prove that the operator of stochastic differentiation of first order on the spaces of nonregular test functions satisfies the Leibnitz rule with respect to the Wick multiplication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信