精确科学中的基本二元性:量子力学的应用

David Ellerman
{"title":"精确科学中的基本二元性:量子力学的应用","authors":"David Ellerman","doi":"10.3390/foundations4020013","DOIUrl":null,"url":null,"abstract":"There is a fundamental subsets–partitions duality that runs through the exact sciences. In more concrete terms, it is the duality between elements of a subset and the distinctions of a partition. In more abstract terms, it is the reverse-the-arrows of category theory that provides a major architectonic of mathematics. The paper first develops the duality between the Boolean logic of subsets and the logic of partitions. Then, probability theory and information theory (as based on logical entropy) are shown to start with the quantitative versions of subsets and partitions. Some basic universal mapping properties in the category of Sets are developed that precede the abstract duality of category theory. But by far the main application is to the clarification and interpretation of quantum mechanics. Since classical mechanics illustrates the Boolean worldview of full distinctness, it is natural that quantum mechanics would be based on the indefiniteness of its characteristic superposition states, which is modeled at the set level by partitions (or equivalence relations). This approach to interpreting quantum mechanics is not a jury-rigged or ad hoc attempt at the interpretation of quantum mechanics but is a natural application of the fundamental duality running throughout the exact sciences.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"3 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fundamental Duality in the Exact Sciences: The Application to Quantum Mechanics\",\"authors\":\"David Ellerman\",\"doi\":\"10.3390/foundations4020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a fundamental subsets–partitions duality that runs through the exact sciences. In more concrete terms, it is the duality between elements of a subset and the distinctions of a partition. In more abstract terms, it is the reverse-the-arrows of category theory that provides a major architectonic of mathematics. The paper first develops the duality between the Boolean logic of subsets and the logic of partitions. Then, probability theory and information theory (as based on logical entropy) are shown to start with the quantitative versions of subsets and partitions. Some basic universal mapping properties in the category of Sets are developed that precede the abstract duality of category theory. But by far the main application is to the clarification and interpretation of quantum mechanics. Since classical mechanics illustrates the Boolean worldview of full distinctness, it is natural that quantum mechanics would be based on the indefiniteness of its characteristic superposition states, which is modeled at the set level by partitions (or equivalence relations). This approach to interpreting quantum mechanics is not a jury-rigged or ad hoc attempt at the interpretation of quantum mechanics but is a natural application of the fundamental duality running throughout the exact sciences.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"3 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations4020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations4020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有一种基本的子集-分区对偶性贯穿于精密科学之中。具体而言,它是子集元素与分区之间的对偶性。更抽象地说,它是范畴论的逆箭,为数学提供了一个重要的架构。本文首先发展了子集布尔逻辑与分区逻辑之间的对偶性。然后,证明概率论和信息论(基于逻辑熵)是从子集和分区的定量版本开始的。在范畴论的抽象对偶性之前,我们还提出了集合范畴中的一些基本通用映射性质。但到目前为止,它的主要应用是澄清和解释量子力学。由于经典力学说明了完全不同的布尔世界观,量子力学自然会基于其特征叠加态的不确定性,而这种不确定性在集合层面上是由分区(或等价关系)建模的。这种解释量子力学的方法并不是对量子力学解释的偷梁换柱或临时尝试,而是贯穿整个精密科学的基本二元性的自然应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fundamental Duality in the Exact Sciences: The Application to Quantum Mechanics
There is a fundamental subsets–partitions duality that runs through the exact sciences. In more concrete terms, it is the duality between elements of a subset and the distinctions of a partition. In more abstract terms, it is the reverse-the-arrows of category theory that provides a major architectonic of mathematics. The paper first develops the duality between the Boolean logic of subsets and the logic of partitions. Then, probability theory and information theory (as based on logical entropy) are shown to start with the quantitative versions of subsets and partitions. Some basic universal mapping properties in the category of Sets are developed that precede the abstract duality of category theory. But by far the main application is to the clarification and interpretation of quantum mechanics. Since classical mechanics illustrates the Boolean worldview of full distinctness, it is natural that quantum mechanics would be based on the indefiniteness of its characteristic superposition states, which is modeled at the set level by partitions (or equivalence relations). This approach to interpreting quantum mechanics is not a jury-rigged or ad hoc attempt at the interpretation of quantum mechanics but is a natural application of the fundamental duality running throughout the exact sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信