Siyin Guo, Q. Zhu, Yilin Chen, Meng Zhang, Minhan Mi, Jiejie Zhu, Yi-Min Lei, Sirui An, Jia-Ni Lu, Can Gong, Xiaohua Ma
{"title":"InAlN/GaN 双通道 HEMT 中间隔层厚度的影响","authors":"Siyin Guo, Q. Zhu, Yilin Chen, Meng Zhang, Minhan Mi, Jiejie Zhu, Yi-Min Lei, Sirui An, Jia-Ni Lu, Can Gong, Xiaohua Ma","doi":"10.1088/1361-6641/ad4a2d","DOIUrl":null,"url":null,"abstract":"\n In this paper, the impact of upper channel layer thickness on the electrical characteristics and hysteresis behavior of double-channel InAlN/GaN HEMTs were investigated. The devices with an upper channel layer thickness of 20 nm exhibit higher output current and lower Ron compared to devices with a thickness of 10/6 nm. This is attributed to the higher sheet carrier density and the reduced scattering. However, a 20 nm thickness of the upper channel layer in HEMT exhibits hysteresis phenomena in its electrical characteristics. For this hysteresis phenomenon, capacitance measurements and TEM characterization indicate that it is caused by dislocations in the lower barrier layer under the gate. A thicker upper channel layer is beneficial to increasing the output current of the device but leads to degradation of the lower InAlN barrier layer, resulting in hysteresis. This study provides an optimized solution for the growth and device fabrication of double-channel InAlN materials.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of spacer layer thickness in InAlN/GaN double-channel HEMTs\",\"authors\":\"Siyin Guo, Q. Zhu, Yilin Chen, Meng Zhang, Minhan Mi, Jiejie Zhu, Yi-Min Lei, Sirui An, Jia-Ni Lu, Can Gong, Xiaohua Ma\",\"doi\":\"10.1088/1361-6641/ad4a2d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, the impact of upper channel layer thickness on the electrical characteristics and hysteresis behavior of double-channel InAlN/GaN HEMTs were investigated. The devices with an upper channel layer thickness of 20 nm exhibit higher output current and lower Ron compared to devices with a thickness of 10/6 nm. This is attributed to the higher sheet carrier density and the reduced scattering. However, a 20 nm thickness of the upper channel layer in HEMT exhibits hysteresis phenomena in its electrical characteristics. For this hysteresis phenomenon, capacitance measurements and TEM characterization indicate that it is caused by dislocations in the lower barrier layer under the gate. A thicker upper channel layer is beneficial to increasing the output current of the device but leads to degradation of the lower InAlN barrier layer, resulting in hysteresis. This study provides an optimized solution for the growth and device fabrication of double-channel InAlN materials.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad4a2d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad4a2d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of spacer layer thickness in InAlN/GaN double-channel HEMTs
In this paper, the impact of upper channel layer thickness on the electrical characteristics and hysteresis behavior of double-channel InAlN/GaN HEMTs were investigated. The devices with an upper channel layer thickness of 20 nm exhibit higher output current and lower Ron compared to devices with a thickness of 10/6 nm. This is attributed to the higher sheet carrier density and the reduced scattering. However, a 20 nm thickness of the upper channel layer in HEMT exhibits hysteresis phenomena in its electrical characteristics. For this hysteresis phenomenon, capacitance measurements and TEM characterization indicate that it is caused by dislocations in the lower barrier layer under the gate. A thicker upper channel layer is beneficial to increasing the output current of the device but leads to degradation of the lower InAlN barrier layer, resulting in hysteresis. This study provides an optimized solution for the growth and device fabrication of double-channel InAlN materials.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.