M. Zabolotskyi, T.M. Zabolotskyi, S. Tarasyuk, Yu.M. Hal
{"title":"空间零类次谐函数的规律行为","authors":"M. Zabolotskyi, T.M. Zabolotskyi, S. Tarasyuk, Yu.M. Hal","doi":"10.15330/cmp.16.1.84-92","DOIUrl":null,"url":null,"abstract":"Let $u$ be a subharmonic in $\\mathbb{R}^m$, $m\\geq 3$, function of the zero kind with Riesz measure $\\mu$ on negative axis $Ox_1$, $n(r,u)=\\mu\\left(\\{x\\in\\mathbb{R}^m \\colon |x|\\leq r\\}\\right)$, \\[N(r,u)=(m-2)\\int_1^r n(t,u)/t^{m-1}dt,\\] $\\rho(r)$ is a proximate order, $\\rho(r)\\to\\rho$ as $r\\to+\\infty$, $0<\\rho<1$. We found the asymptotic of $u(x)$ as $|x|\\to+\\infty$ by the condition $N(r,u)=\\left(1+o(1)\\right)r^{\\rho(r)}$, $r\\to+\\infty$. We also investigated the inverse relationship between a regular growth of $u$ and a behavior of $N(r,u)$ as $r\\to+\\infty$.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular behavior of subharmonic in space functions of the zero kind\",\"authors\":\"M. Zabolotskyi, T.M. Zabolotskyi, S. Tarasyuk, Yu.M. Hal\",\"doi\":\"10.15330/cmp.16.1.84-92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $u$ be a subharmonic in $\\\\mathbb{R}^m$, $m\\\\geq 3$, function of the zero kind with Riesz measure $\\\\mu$ on negative axis $Ox_1$, $n(r,u)=\\\\mu\\\\left(\\\\{x\\\\in\\\\mathbb{R}^m \\\\colon |x|\\\\leq r\\\\}\\\\right)$, \\\\[N(r,u)=(m-2)\\\\int_1^r n(t,u)/t^{m-1}dt,\\\\] $\\\\rho(r)$ is a proximate order, $\\\\rho(r)\\\\to\\\\rho$ as $r\\\\to+\\\\infty$, $0<\\\\rho<1$. We found the asymptotic of $u(x)$ as $|x|\\\\to+\\\\infty$ by the condition $N(r,u)=\\\\left(1+o(1)\\\\right)r^{\\\\rho(r)}$, $r\\\\to+\\\\infty$. We also investigated the inverse relationship between a regular growth of $u$ and a behavior of $N(r,u)$ as $r\\\\to+\\\\infty$.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.16.1.84-92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.16.1.84-92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Regular behavior of subharmonic in space functions of the zero kind
Let $u$ be a subharmonic in $\mathbb{R}^m$, $m\geq 3$, function of the zero kind with Riesz measure $\mu$ on negative axis $Ox_1$, $n(r,u)=\mu\left(\{x\in\mathbb{R}^m \colon |x|\leq r\}\right)$, \[N(r,u)=(m-2)\int_1^r n(t,u)/t^{m-1}dt,\] $\rho(r)$ is a proximate order, $\rho(r)\to\rho$ as $r\to+\infty$, $0<\rho<1$. We found the asymptotic of $u(x)$ as $|x|\to+\infty$ by the condition $N(r,u)=\left(1+o(1)\right)r^{\rho(r)}$, $r\to+\infty$. We also investigated the inverse relationship between a regular growth of $u$ and a behavior of $N(r,u)$ as $r\to+\infty$.