Khaoula Elhabyb, Amine Baina, Mostafa Bellafkih, Ahmed Farouk Deifalla
{"title":"预测教育建筑能耗的机器学习算法","authors":"Khaoula Elhabyb, Amine Baina, Mostafa Bellafkih, Ahmed Farouk Deifalla","doi":"10.1155/2024/6812425","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the past few years, there has been a notable interest in the application of machine learning methods to enhance energy efficiency in the smart building industry. The paper discusses the use of machine learning in smart buildings to improve energy efficiency by analyzing data on energy usage, occupancy patterns, and environmental conditions. The study focuses on implementing and evaluating energy consumption prediction models using algorithms like long short-term memory (LSTM), random forest, and gradient boosting regressor. Real-life case studies on educational buildings are conducted to assess the practical applicability of these models. The data is rigorously analyzed and preprocessed, and performance metrics such as root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to compare the effectiveness of the algorithms. The results highlight the importance of tailoring predictive models to the specific characteristics of each building’s energy consumption.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6812425","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Algorithms for Predicting Energy Consumption in Educational Buildings\",\"authors\":\"Khaoula Elhabyb, Amine Baina, Mostafa Bellafkih, Ahmed Farouk Deifalla\",\"doi\":\"10.1155/2024/6812425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In the past few years, there has been a notable interest in the application of machine learning methods to enhance energy efficiency in the smart building industry. The paper discusses the use of machine learning in smart buildings to improve energy efficiency by analyzing data on energy usage, occupancy patterns, and environmental conditions. The study focuses on implementing and evaluating energy consumption prediction models using algorithms like long short-term memory (LSTM), random forest, and gradient boosting regressor. Real-life case studies on educational buildings are conducted to assess the practical applicability of these models. The data is rigorously analyzed and preprocessed, and performance metrics such as root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to compare the effectiveness of the algorithms. The results highlight the importance of tailoring predictive models to the specific characteristics of each building’s energy consumption.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6812425\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6812425\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6812425","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Machine Learning Algorithms for Predicting Energy Consumption in Educational Buildings
In the past few years, there has been a notable interest in the application of machine learning methods to enhance energy efficiency in the smart building industry. The paper discusses the use of machine learning in smart buildings to improve energy efficiency by analyzing data on energy usage, occupancy patterns, and environmental conditions. The study focuses on implementing and evaluating energy consumption prediction models using algorithms like long short-term memory (LSTM), random forest, and gradient boosting regressor. Real-life case studies on educational buildings are conducted to assess the practical applicability of these models. The data is rigorously analyzed and preprocessed, and performance metrics such as root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to compare the effectiveness of the algorithms. The results highlight the importance of tailoring predictive models to the specific characteristics of each building’s energy consumption.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system