关于主要化的同等条件的说明

IF 1.8 3区 数学 Q1 MATHEMATICS
Roberto Bruno, Ugo Vaccaro
{"title":"关于主要化的同等条件的说明","authors":"Roberto Bruno, Ugo Vaccaro","doi":"10.3934/math.2024419","DOIUrl":null,"url":null,"abstract":"In this paper, we introduced novel characterizations of the classical concept of majorization in terms of upper triangular (resp., lower triangular) row-stochastic matrices, and in terms of sequences of linear transforms on vectors. We used our new characterizations of majorization to derive an improved entropy inequality.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on equivalent conditions for majorization\",\"authors\":\"Roberto Bruno, Ugo Vaccaro\",\"doi\":\"10.3934/math.2024419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduced novel characterizations of the classical concept of majorization in terms of upper triangular (resp., lower triangular) row-stochastic matrices, and in terms of sequences of linear transforms on vectors. We used our new characterizations of majorization to derive an improved entropy inequality.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2024419\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2024419","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们从上三角(或下三角)行随机矩阵和向量的线性变换序列的角度,介绍了经典大化概念的新特征。我们利用大化的新特征推导出了改进的熵不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on equivalent conditions for majorization
In this paper, we introduced novel characterizations of the classical concept of majorization in terms of upper triangular (resp., lower triangular) row-stochastic matrices, and in terms of sequences of linear transforms on vectors. We used our new characterizations of majorization to derive an improved entropy inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信