两类空间域中三维可变阶时间分数偏微分方程的精确数值方案

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haniye Dehestani, Y. Ordokhani, M. Razzaghi
{"title":"两类空间域中三维可变阶时间分数偏微分方程的精确数值方案","authors":"Haniye Dehestani, Y. Ordokhani, M. Razzaghi","doi":"10.3846/mma.2024.18535","DOIUrl":null,"url":null,"abstract":"We consider the discretization method for solving three-dimensional variable-order (3D-VO) time-fractional partial differential equations. The proposed method is developed based on discrete shifted Hahn polynomials (DSHPs) and their operational matrices. In the process of method implementation, the modified operational matrix (MOM) and complement vector (CV) of integration and pseudooperational matrix (POM) of VO fractional derivative plays an important role in the accuracy of the method. Further, we discuss the error of the approximate solution. At last, the methodology is validated by well test examples in two types of space domains. In order to evaluate the accuracy and applicability of the approach, the results are compared with other methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"3 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN ACCURATE NUMERICAL SCHEME FOR THREE-DIMENSIONAL VARIABLE-ORDER TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN TWO TYPES OF SPACE DOMAINS\",\"authors\":\"Haniye Dehestani, Y. Ordokhani, M. Razzaghi\",\"doi\":\"10.3846/mma.2024.18535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the discretization method for solving three-dimensional variable-order (3D-VO) time-fractional partial differential equations. The proposed method is developed based on discrete shifted Hahn polynomials (DSHPs) and their operational matrices. In the process of method implementation, the modified operational matrix (MOM) and complement vector (CV) of integration and pseudooperational matrix (POM) of VO fractional derivative plays an important role in the accuracy of the method. Further, we discuss the error of the approximate solution. At last, the methodology is validated by well test examples in two types of space domains. In order to evaluate the accuracy and applicability of the approach, the results are compared with other methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2024.18535\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.18535","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了求解三维变阶(3D-VO)时间分数偏微分方程的离散化方法。所提出的方法基于离散移位哈恩多项式(DSHPs)及其运算矩阵。在方法实施过程中,积分的修正运算矩阵(MOM)和补矢量(CV)以及 VO 分数导数的伪运算矩阵(POM)对方法的精度起着重要作用。此外,我们还讨论了近似解的误差。最后,我们通过两类空间域中的测试实例对该方法进行了验证。为了评估该方法的准确性和适用性,我们将结果与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN ACCURATE NUMERICAL SCHEME FOR THREE-DIMENSIONAL VARIABLE-ORDER TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN TWO TYPES OF SPACE DOMAINS
We consider the discretization method for solving three-dimensional variable-order (3D-VO) time-fractional partial differential equations. The proposed method is developed based on discrete shifted Hahn polynomials (DSHPs) and their operational matrices. In the process of method implementation, the modified operational matrix (MOM) and complement vector (CV) of integration and pseudooperational matrix (POM) of VO fractional derivative plays an important role in the accuracy of the method. Further, we discuss the error of the approximate solution. At last, the methodology is validated by well test examples in two types of space domains. In order to evaluate the accuracy and applicability of the approach, the results are compared with other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信