Michaela Olisha S. Lobregas, Ratthapol Rangkupan, David Riassetto, Chalida Klaysom
{"title":"推进表面增强电纺纳米纤维膜:定制特性以提高膜蒸馏性能","authors":"Michaela Olisha S. Lobregas, Ratthapol Rangkupan, David Riassetto, Chalida Klaysom","doi":"10.1002/mame.202300461","DOIUrl":null,"url":null,"abstract":"<p>Electrospun nanofiber membranes (ENMs) have emerged as a cutting-edge solution for membrane distillation (MD), recognized for their highly porous and interconnected architecture. This distinctive structure enables them to offer minimal mass transfer resistance, making them exceptionally suited for high-efficiency membrane-based separation processes. However, the very porosity that defines their strength also renders them vulnerable to fouling, scaling, and wetting during operation, which in turn compromises their performance. Current research efforts are geared toward overcoming these obstacles by refining the surface design and characteristics of ENMs. This review delves into the latest advancements in surface-enhanced electrospun nanofiber membranes tailored for MD applications. It discusses the existing gaps in research and provides forward-looking insights into the future of ENMs, spotlighting the development of membranes with precisely tunable surface attributes for optimized performance.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 7","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202300461","citationCount":"0","resultStr":"{\"title\":\"Advancing Surface-Enhanced Electrospun Nanofiber Membranes: Customizing Properties for Enhanced Performance in Membrane Distillation\",\"authors\":\"Michaela Olisha S. Lobregas, Ratthapol Rangkupan, David Riassetto, Chalida Klaysom\",\"doi\":\"10.1002/mame.202300461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrospun nanofiber membranes (ENMs) have emerged as a cutting-edge solution for membrane distillation (MD), recognized for their highly porous and interconnected architecture. This distinctive structure enables them to offer minimal mass transfer resistance, making them exceptionally suited for high-efficiency membrane-based separation processes. However, the very porosity that defines their strength also renders them vulnerable to fouling, scaling, and wetting during operation, which in turn compromises their performance. Current research efforts are geared toward overcoming these obstacles by refining the surface design and characteristics of ENMs. This review delves into the latest advancements in surface-enhanced electrospun nanofiber membranes tailored for MD applications. It discusses the existing gaps in research and provides forward-looking insights into the future of ENMs, spotlighting the development of membranes with precisely tunable surface attributes for optimized performance.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"309 7\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202300461\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202300461\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202300461","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Advancing Surface-Enhanced Electrospun Nanofiber Membranes: Customizing Properties for Enhanced Performance in Membrane Distillation
Electrospun nanofiber membranes (ENMs) have emerged as a cutting-edge solution for membrane distillation (MD), recognized for their highly porous and interconnected architecture. This distinctive structure enables them to offer minimal mass transfer resistance, making them exceptionally suited for high-efficiency membrane-based separation processes. However, the very porosity that defines their strength also renders them vulnerable to fouling, scaling, and wetting during operation, which in turn compromises their performance. Current research efforts are geared toward overcoming these obstacles by refining the surface design and characteristics of ENMs. This review delves into the latest advancements in surface-enhanced electrospun nanofiber membranes tailored for MD applications. It discusses the existing gaps in research and provides forward-looking insights into the future of ENMs, spotlighting the development of membranes with precisely tunable surface attributes for optimized performance.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)