二氧化碳和土壤水分处理对砍伐幼苗形态和异速性状变异的影响:对四种早生落叶树种的研究

IF 2.4 2区 农林科学 Q1 FORESTRY
Forests Pub Date : 2024-05-14 DOI:10.3390/f15050856
Axel Brisebois, John E. Major
{"title":"二氧化碳和土壤水分处理对砍伐幼苗形态和异速性状变异的影响:对四种早生落叶树种的研究","authors":"Axel Brisebois, John E. Major","doi":"10.3390/f15050856","DOIUrl":null,"url":null,"abstract":"Atmospheric CO2 levels have been increasing, and likewise, increasing drought events have been following increasing temperatures. There is very little literature on the effects of climate change factors on early-successional deciduous species used for ecological restoration. Thus, morphological and allometric variation in four coppiced early-successional deciduous species was examined in response to a 2 × 2 factorial of ambient CO2 (aCO2, 400 ppm) and elevated CO2 (eCO2, 800 ppm), as well as well-watered and drought treatments with 15%–20% and 5%–10% volumetric moisture content, respectively, grown in sandy soil with low soil nitrogen (N) under greenhouse conditions. The four species examined were as follows: green alder (Alnus viridis subsp. crispa (Ait.) Turrill), speckled alder (A. incana subsp. rugosa (Du Roi) R.T. Clausen), gray birch (Betula populifolia (Marshall)), and white birch (B. papyrifera (Marshall)), and all are from the same phylogenetic family, Betulaceae. Genus differences in morphological and growth traits were large, especially in response to the environmental treatments used. Alders upregulated all growth traits under eCO2 because of the strong coppicing sink effect and the additional foliar N provided by the actinorhizal ability of the genus, whereas birches remained the same or slightly decreased under eCO2. As a result, alders have a significantly greater foliar N than birches, with 2.8 and 1.0%, respectively. All species reduced growth under drought, and green alder had the greatest stem dry mass growth, followed by speckled alder and then the birches. Under drought, eCO2 not only mitigated the alder drought dry mass but, in fact, doubled the stem dm, whereas eCO2 only just mitigated the birches drought response. When corrected for size using stem height, alders allocated more to stem and leaf and less to root dry mass than birches. Atmospheric CO2 and soil moisture treatments changed organ biomass allocation. The tallest stem height was the best predictor of total (above and below) dry mass. With increasing atmospheric CO2, particularly on low nutrient sites, the results show alders are capable of sequestering far more carbon than birches. In addition, with more atmospheric CO2, alders can mitigate against drought conditions better compared to birches.","PeriodicalId":12339,"journal":{"name":"Forests","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of CO2 and Soil Moisture Treatments on Morphological and Allometric Trait Variation in Coppiced Seedlings: A Study of Four Early-Successional Deciduous Species\",\"authors\":\"Axel Brisebois, John E. Major\",\"doi\":\"10.3390/f15050856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric CO2 levels have been increasing, and likewise, increasing drought events have been following increasing temperatures. There is very little literature on the effects of climate change factors on early-successional deciduous species used for ecological restoration. Thus, morphological and allometric variation in four coppiced early-successional deciduous species was examined in response to a 2 × 2 factorial of ambient CO2 (aCO2, 400 ppm) and elevated CO2 (eCO2, 800 ppm), as well as well-watered and drought treatments with 15%–20% and 5%–10% volumetric moisture content, respectively, grown in sandy soil with low soil nitrogen (N) under greenhouse conditions. The four species examined were as follows: green alder (Alnus viridis subsp. crispa (Ait.) Turrill), speckled alder (A. incana subsp. rugosa (Du Roi) R.T. Clausen), gray birch (Betula populifolia (Marshall)), and white birch (B. papyrifera (Marshall)), and all are from the same phylogenetic family, Betulaceae. Genus differences in morphological and growth traits were large, especially in response to the environmental treatments used. Alders upregulated all growth traits under eCO2 because of the strong coppicing sink effect and the additional foliar N provided by the actinorhizal ability of the genus, whereas birches remained the same or slightly decreased under eCO2. As a result, alders have a significantly greater foliar N than birches, with 2.8 and 1.0%, respectively. All species reduced growth under drought, and green alder had the greatest stem dry mass growth, followed by speckled alder and then the birches. Under drought, eCO2 not only mitigated the alder drought dry mass but, in fact, doubled the stem dm, whereas eCO2 only just mitigated the birches drought response. When corrected for size using stem height, alders allocated more to stem and leaf and less to root dry mass than birches. Atmospheric CO2 and soil moisture treatments changed organ biomass allocation. The tallest stem height was the best predictor of total (above and below) dry mass. With increasing atmospheric CO2, particularly on low nutrient sites, the results show alders are capable of sequestering far more carbon than birches. In addition, with more atmospheric CO2, alders can mitigate against drought conditions better compared to birches.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f15050856\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15050856","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

大气中的二氧化碳含量一直在增加,同样,随着气温的升高,干旱事件也越来越多。有关气候变化因素对用于生态恢复的早演替落叶物种影响的文献很少。因此,在温室条件下,研究了四种早期演替落叶树种在环境二氧化碳(aCO2,400 ppm)和高浓度二氧化碳(eCO2,800 ppm)的 2 × 2 因子因子,以及分别为 15%-20%和 5%-10%体积含水量的充足水分和干旱处理下的形态和异速变化。考察的四个物种如下:绿赤杨(Alnus viridis subsp. crispa (Ait.) Turrill)、斑点赤杨(A. incana subsp.不同种属的形态和生长性状差异很大,尤其是对所用环境处理的反应。在 eCO2 条件下,桤木的所有生长性状都得到了改善,这是因为桤木具有很强的灌木吸收汇效应,而且桤木属的放线能力还能提供额外的叶面氮,而桦木在 eCO2 条件下的生长性状则保持不变或略有下降。因此,赤杨的叶面氮含量明显高于桦树,分别为 2.8% 和 1.0%。所有物种在干旱条件下都减少了生长,绿赤杨的茎干重增长最大,其次是斑点赤杨,然后是桦树。在干旱条件下,eCO2 不仅减轻了绿赤杨的干旱干重,实际上还使其茎干干重增加了一倍,而 eCO2 仅仅减轻了桦树的干旱反应。当使用茎高校正大小时,赤杨分配给茎和叶的干质量比桦树多,而分配给根的干质量比桦树少。大气二氧化碳和土壤水分处理改变了器官生物量分配。最高茎高是预测总干质量(上部和下部)的最佳指标。随着大气中二氧化碳含量的增加,尤其是在低养分地区,结果表明赤杨的固碳能力远远超过桦树。此外,随着大气中二氧化碳含量的增加,赤杨比桦树更能抵御干旱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of CO2 and Soil Moisture Treatments on Morphological and Allometric Trait Variation in Coppiced Seedlings: A Study of Four Early-Successional Deciduous Species
Atmospheric CO2 levels have been increasing, and likewise, increasing drought events have been following increasing temperatures. There is very little literature on the effects of climate change factors on early-successional deciduous species used for ecological restoration. Thus, morphological and allometric variation in four coppiced early-successional deciduous species was examined in response to a 2 × 2 factorial of ambient CO2 (aCO2, 400 ppm) and elevated CO2 (eCO2, 800 ppm), as well as well-watered and drought treatments with 15%–20% and 5%–10% volumetric moisture content, respectively, grown in sandy soil with low soil nitrogen (N) under greenhouse conditions. The four species examined were as follows: green alder (Alnus viridis subsp. crispa (Ait.) Turrill), speckled alder (A. incana subsp. rugosa (Du Roi) R.T. Clausen), gray birch (Betula populifolia (Marshall)), and white birch (B. papyrifera (Marshall)), and all are from the same phylogenetic family, Betulaceae. Genus differences in morphological and growth traits were large, especially in response to the environmental treatments used. Alders upregulated all growth traits under eCO2 because of the strong coppicing sink effect and the additional foliar N provided by the actinorhizal ability of the genus, whereas birches remained the same or slightly decreased under eCO2. As a result, alders have a significantly greater foliar N than birches, with 2.8 and 1.0%, respectively. All species reduced growth under drought, and green alder had the greatest stem dry mass growth, followed by speckled alder and then the birches. Under drought, eCO2 not only mitigated the alder drought dry mass but, in fact, doubled the stem dm, whereas eCO2 only just mitigated the birches drought response. When corrected for size using stem height, alders allocated more to stem and leaf and less to root dry mass than birches. Atmospheric CO2 and soil moisture treatments changed organ biomass allocation. The tallest stem height was the best predictor of total (above and below) dry mass. With increasing atmospheric CO2, particularly on low nutrient sites, the results show alders are capable of sequestering far more carbon than birches. In addition, with more atmospheric CO2, alders can mitigate against drought conditions better compared to birches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信